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PROFESSOR: Ready to go. So first of all, to say thank you to several people in the class who sent

codes to find these wavefronts when shock, a step function is moving along with

velocity c. I had roughly drawn what these three methods produced, but it was much

better to see it in Mr. Sekora's movie that's on 18.086 site and sure enough, behind

the moving front is an overshoot that reminds us of the Gibbs phenomenon from

Lax-Wendroff and I think it's sort of unavoidable if we have a negative because one

of the three coefficients at the previous time is negative. For Lax-Wendroff, that's

how it gets its second order accuracy and we see that better accuracy in a much

steeper, much steeper profile.

Then Lax-Freidrichs, if you've noticed, has a sort of jagged profile. Maybe you've

realized why that would be. Somehow Lax-Freidrichs kind of operates on a

staggered grid. We'll see. Actually, with I've drawn a staggered grid here, so I can

say what I mean. Lax-Freidrichs computes this value from the two earlier values

there and then at the next level again and so forth, so that actually, Lax-Freidrichs is

using two staggered grids separately. I think -- normally with Lax-Freidrichs, we call

that n plus 1 and n plus 2 and n plus 3, but the picture is still right, so I think that's

probably responsible for what you see, that there's two waves, two fronts, right? 1

delta x away from each other and finally, upwind is also smeared out.

I guess I was so pleased to see these actually showing on the website and that

makes me think of more questions. Maybe you too. First of all, as time goes

forward, we see this bump beginning to appear. So am I right in thinking that it

reaches a certain height and stays there? So I guess I'm thinking about sort of

further questions, because every time you do a numerical experiment, good

additional question show up. So I'm wondering, as this wavefront forms, this

characteristic profile for these three methods, first of all, does that profile settle

down to a steady profile? Ultimately it'd be great to be able to predict what it would
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be. In particular, does that bump reach a certain height, because you can see it just

barely forming and then you see it growing to a certain point? Then when the movie

ends, fortunately it plots this picture and you really see the profile and you can

actually see if you look closely that it goes above 1 again and probably more.

That would be, does it approach a steady profile? Does that height settle down? It'd

be fantastic to be able to predict that height. For example, you always want to know,

how do things depend on the parameter? The one parameter we have in this

problem is r. c delta t over delta x. If I change r, I'm changing all the coefficients. If I

changed r to be exactly 1, then the profile would be perfect, right? That's the golden

ratio, r equal 1. I would be computing that value exactly from this value at exactly

the right slope on the characteristic and perfection.

Now as r goes away from 1, I presume -- it goes down below 1. Of course, if it goes

above 1, catastrophe. If it goes below 1, I presume the bump begins to appear,

goes higher. I don't know. Could you see how the dependence on r appears? Then

I can suggest one more thing, which is -- let's put a forth guy onto this picture, which

would be leapfrog. leapfrog for first order equations, so let me just put down below

what that would be. So it would be on that kind of a staggered grid. A new value at

time n plus 1 would come from these at time n, really. On this one, at time n minus

1. So leapfrog -- you'd think of it right away. I use a center difference in time ujn plus

1 minus ujn minus 1 over 2 delta t equals c times a center difference in space uj

plus 1 n minus uj minus 1 n over 2 delta x. So you see right away, the 2s cancel.

The delta x times c -- the delta t times c over delta x is our old ratio r, so this is

easily written in terms of r again. It does have this two time step issue and of

course, we have to think about stability.

I'm writing down a fourth candidate for the equation. Ut equals cux, of course.

Before I come back to the second order equations or systems, I just wanted to put

in these comments, partly because I'm thinking about projects that are -- and I hope

you are -- so some people will have [? cici's ?] or problems from other courses

which involve solving PDEs and that'd be perfectly natural to base some project on,

but if you don't have some specific application, then here are a whole lot of
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interesting question. Just go further with that, so the dependence on r would be a --

the profile dependence on r, c delta t over delta x would be a question.

Let me just emphasize, what's the goal? When I say that this upwind one is

smeared out, I mean that it doesn't satisfy what you really hope for. You want to

capture that shock, that discontinuity -- not perfectly. You can't expect that, but you

want to capture it, maybe in, let's say, 2 delta x. A good method captures the shock

within 2 delta x and does it without much undesirable oscillation, physical oscillaton

like that, so these are methods where we're trading off. A good shot capture versus

a smeared one, which is not satisfactory, really, in a lot of applications. So capturing

the shock within 2 delta x roughly is highly desirable and you might have to go add a

artificial viscosity that we'll discuss to get there.

So that's past things, but still very much present, if I can say. Here I've introduced a

new leapfrog, a one way equation leapfrog, I'll call this, where the last lecture was

about two way leapfrog. Leapfrog for utt equals c squared uxx, a two way wave

equation. I might just mention about this one way leapfrog, once you put in e to the

ikx as we always do, or e to the ikj delta x in the discrete case -- so you would put in

an e to the ijj delta x times k and then find the g, the growth factor in -- that'll depend

on k and will tell us the time dependence. It'll be a g to the nth.

I think you'll find that for this guy, the absolute value of g is exactly 1 while it's stable.

Of course, if the Courrant condition is violated, then there's no way it could be stable

and gs will grow, be bigger than 1. But I think in the stable range, you will have --

this g will have absolute value exactly 1. So it'll be on the unit circle. You don't have

much leeway, right? We found upwind was, like, well inside, Lax-Freidrichs was well

inside, Lax-Wendroff, because it had higher accuracy for low frequencies was closer

and I think this guy is right on. So this is the first order methods. This would be Lax-

Wendroff and this would be this second order method. So you're really playing with

fire there and maybe this is not a favorite, just because it's too close to the edge, in

fact, right on the edge. So those are some comments really generated by your

numerical experiments and I think that's the way this course should -- homeworks

and projects should develop out of numerical experiment.
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Now I'll come back to complete my lecture on the second order wave equation. So

we studied leapfrog for that. I won't repeat that, but then with second order wave

equation, we have another option, which is to reduce a second order equation with

a two time derivative to a system of two equations that are first order in time and

space. I've chosen to use the letters h and e as a kind of hint that we're touching a

really big application, which is electromagnetism. So e for the electric field, h for the

magnetic field but here in 1 d -- so it allows me just to mention that in 3 d, when e

has three components, h has three components, this is really the curl and this is

really minus the curl and the notes will show the beautiful Yee mesh, staggered

mesh that copies for finite difference methods, the properties of the curl, our

interpretation of and the properties of -- that Maxwell discovered the physics of --

you know, current magnetic fields going around a wire that along which one an

electric field is going.

But let me stay here with one dimension. So first of all, can we recover the wave

equation from that? Let's just see that we haven't left behind the wave equation. So

I just take the second derivative -- so the second derivative -- I just want to recover

the wave equation so that I haven't lost it here -- so this will be -- if I I'm taking the

time derivative of the first equation, so I get d second hdtdx, right? But bye the

useful, extremely useful fact that this is the same as taking the t derivative first and

the x derivative second, now I have the x derivative of this equation, so this is c --

now I have the x derivative or c times it, so now I'm up to c squared, the x derivative

of the x derivative, right? So we eliminated h, got back to one equation, second

order and it's the wave equation.

I want to show the same thing now for finite differences. It's just -- it's such a simple

and useful device and our point will be that it works for -- just as well for differences.

That allows us to do this staggered grid idea. So the staggered grid idea is, I'll do e

on this grid, at these grid points, h at the half points, e again at the integer points, h

again at the half points. Now, so my difference method, leapfrog, on this staggered

mesh, will copy, so the first equation will give e at the new time from the difference

in h at this time. So you see it. The edt is going to be replaced by that time
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difference. The hdx is going to be replaced by this space difference and that will

determine e at the new time. So I need time 0 and time 1/2 to get started. Maybe I

put those down here. Somewhere I have use the initial condition, the initial velocity

to get started on e and h and then I go onwards. I've got to this point and this point.

Then this guy comes from this one, this one and this one. Of course, that similarly

comes from the same equation shifted over.

Now I know these. Now I'm ready for this one. Coming from -- what am I

approximating now? I'm on the staggered part of the grid, the half steps. I'm

approximating this on the half steps, right where h is defined. So that minus that is

the time difference. This minus this -- which I know these now -- is the space

difference in this equation and that's what allows me to compute the new one. You

see, it's a simple idea. It's close but different from my scale or leapfrog, one way

leapfrog here. Here it was the same u at all the points. here it is e at the integer time

levels and h at the half integer time levels. It's natural to say I'm calling this leapfrog.

Could I do this for the difference equation? I just want to see that if I eliminate h --

you saw what happened there. By using the identity that the second derivative in t

and x is always the same as the second derivative in x and t, I eliminated h and got

an equation that involved e only.

What's going to be the corresponding identity? Trivial, but just -- trivial things are not

bad things to notice -- for the different method. This is what I wanted to be sure of,

for the h part. This h -- so the h -- do you mind if I draw yet another symbol? I want

to use this idea to eliminate h. So let me put two hs there. Is that right? Yeah. I think

what I'd like to know -- let me just say what I believe. I believe that the time

difference of the space difference of h at mesh points is equal to the space

difference of the time difference of h at the same mesh points. I meant to put these

as subsequent. it's not delta x. It's delta sub x. Difference in the time direction,

difference in the space direction.

Let's just see what this means. Let me redraw these four points. These are h. h at

all those points. So that says, figure out the space differences. So this, this minus

this and this minus this and then take the time difference of those. Can I see what I'll
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get if I do that? So this means I take the space differences, so I have 1 minus 1 and

that would be 1 minus 1, but now I'm going to take the time difference of those. So

that'll be this one minus this one and this one plus this one. Do you see that? What

we have here is h at this point minus h at this point minus h at this point plus h at

this point plus 1.

I claim that we have the same thing here, that if I take the time differences first --

can I do that instead of taking the space differences first? I'll take this one, this time

difference, this minus this and I'll subtract -- I'm taking now the space difference --

I'll subtract -- are you with me? You see, it's just the same four values -- two 1s and

minus 1s, whether we go first -- in fact, this actually is a -- I think maybe throws a

little light on the calculus identity, that we can exchange the order of the derivatives,

because we know we can exchange the order of the differences, because we just

got numbers like 1 minus 1 minus 1 and plus 1.

If we let the spacing, the mesh, go to 0 this and divided by the delta x and the delta

t, I suppose we would prove the continuous case. So in a way, this throws light on

something that's probably something that we take for granted, but we wouldn't want

to be pressed on too closely. So having that identity allows me to do exactly what I

did with the continuous case there and show that this, when I eliminate the half

levels, I've got ordinary leapfrog. So when I eliminate half levels, I will be -- when I

eliminate this half level, let's say -- and I'll be connecting -- when I eliminate half

levels, I'm going to be connecting these at three levels -- one two three. It'll be

leapfrog.

So since it's been a few days since we wrote down two way leapfrog or second

order equation leapfrog, let me just write it again and that's what we would get. The

time difference squared of e, it's equal will be equal to c squared times the space

difference squared of e. Of course, here we have a delta x squared and here a

delta t squared. So altogether, an r squared. That's the formula we know. That's the

formula we know. So if I simplify this to make it look good and put the delta t

squared up there, you see that it's just r squared. Maybe it's worth realizing that

again the magic r equal 1. The magic ratio r equal 1 gives the exact u, agreeing
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exactly with you. This equation, if r is 1, would be satisfied exactly by the continuous

solution and so it's the same as this one.

So that's leapfrog. So can I summarize leapfrog? Leapfrog was, first of all, that led

us to these -- it worked for second order equations. It led us to the same stability

condition that r had to be less or equal to 1 but it took a quadratic equation for g.

Remember, we had g squared minus 2 g times some quantity a that involved rs and

cosines plus 1 equals 0. The reason it was a quadratic was there were two time

steps involved. We handled that. We got stability. If r was less than or equal to 1,

that let us to a. In magnitude, less or equal 1 and led us to g. I'll just remember

those steps: a less or equal 1 and that let us to g.

Yes, the notes, including more about Maxwell's equation and Yee's beautiful

method m a figure that shows his m will go up -- I mean, every section is getting

upgraded and this one was the next one to be upgraded. Probably by tomorrow,

you'll have a good section on second order equations. For me, that's what I wanted

to say about the wave equation alone, with no diffusion and now I'm ready to move

to the heat equation. So what do we have coming up? Maybe important to say

what's coming up.

So we've done one way wave. Now we've done two way waves. Next comes the

heat equation, heat diffusion and then will come a mixture of the two, convection

diffusion -- and by the way, so I'll go straight to these -- in a couple of weeks, we'll

have a guest lecturer who will do the applications to financial mathematics,

mathematical finance. Specifically the Black-Scholes equation. So you probably

know that a lot of effort and a lot of money are going into the valuation of options

and other financial derivatives and that Black-Scholes equation beautifully produced

the heat equation and additional correction terms will produce a convection diffusion

equation. So this is an application that we wouldn't have made some years ago, but

now it's worth focusing on that. I think it's interesting in itself. So this is what's

coming and then you could say one way wave equations, but nonlinear. So

nonlinear wave equations and those are called conservation laws. that's after these

linear cases. Alright.
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So I'm ready to tackle the heat equation, starting then on to the next section of the

notes. So let me tackle it here. So the heat equation. Let me take the constant to be

1 ut p equals uxx, because we already see the big difference. Now there's a second

x derivative, but only a first derivative in time. The dimensions of t and x are no

longer the same. We won't have delta t and delta x comparable. Now it will be delta

t comparable with delta x squared and that's a very significant difference, because

that's -- if delta x is small, delta x squared is extremely small. So when delta t is

constrained by delta x squared, we're looking at small time steps. We're looking at

stiff systems, absolutely. This is going to be a stiff problem, because the low

frequencies and the high frequencies differ enormously on the decay rate. In fact,

why don't we see it right away, starting as always with exponentials.

So if I plug in u of x and t is sum g of te to the ikx, separating variables as always.

Look for a pure exponential solution, plug that in and we get dgdt times e to the ikx

on the left and now I have to take two x derivatives, so that brings ik down twice. So

that's minus k squared i squared giving the minus 1 times g times e to the ikx. Now

of course, I can cancel that which is never 0 and I've separated out the time part,

the g part, the dgt as minus k squared g. So g is e to the minus k squared t. Notice

that it's k squared and notice that it's real and negative. See, that's a very big this

difference. Compare e to the ikct, which it was for the one way wave equation. The

difference is enormous here. That's magnitude 1 energy conserved. This is

magnitude smaller than 1 energy dissipated. We had a ratio delta t over delta x.

Now we're going to see delta t over delta x squared because somehow x and t are -

- now have -- it's x squared that matches t now. So now when I put that into here --

let me just do it -- g of t is e to the minus k squared t.

So there is the pure exponential. Simple as always, because we have constant

coefficients, but highly informative. I guess another thing that I read off of that is,

what frequencies are decaying fast? High frequencies? If k is large, k squared is

very large and e to the minus k squared t is decaying very quickly. So high

frequency noise in this system, roughness, discontinuities are going to get

smoothed out, strongly by moving forward in time. Physically, what's happening is
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we have our wavefront, which stayed a perfect step function in the wave equation,

will instantly smear. So diffusion smears discontinuity. Heat travels. If we were back

over here, if the temperature starts out as 1 on this side and 0 on this side, then in

an instant, some heat flows from right to left. In fact, it flows with infinite speed. In a

short delta t, there's a little heat all the way out there -- very little, of course,

because it's -- I guess we want to see what that behavior is.

So I now want to write down -- staying with the differential equation, what do we

want to do? We did the exponential case and learned a good bit from that, the fast

decay of high frequencies. The next step would be to put different frequencies,

different ks together by linearity, we can add these solutions. We can multiply that

by any numbers we want, depending on k. We still have solutions and we can

integrate over k, so we will actually. That that will be the next step. Let me write

down what that does. I'm going to jump, take a little jump here to put on the board

what I just said in words. I can multiply this, e to the minus k squared t e to the iks --

that's what's happening to the pure frequency k. If I multiply that by the amount of

that frequency, which is in the initial condition -- so here is the intiial condition, u 0,

and I've taken its Fourier transform. This tells me how much of frequency k is in the

problem, is in the initial problem. This tells me how much of frequency k is in the

initial problem. That amount multiplies this with this rapid decay as time goes

forward, but at any later time, I'm just adding up -- and since k -- we're on the whole

line -- k is a continuous -- so we add up from k equal minus infinity to infinity and I

think we have to remember the 2 pi that depends on our particular definition of that

transform, but I'm going to stay with this one.

That's the answer. That's u of x and t. So I've said that in words, but actually, we

could just check it. We would like to know that this left hand side solves the heat

equation and we would like to know that it has the correct start, the correct u of x

and 0. Let's check that. At t equals 0 at the start, this is 1. So at the start, this

formula, without that thing there, is just the inverse Fourier transform that takes the

Fourier transform, multiplies by this, integrates to recover u 0. So it does start out

correctly. Should I say that again? It starts correctly because at t equal 0, this is just

the inverse Fourier transform of u 0 so it produces u 0. It inverts this transform that
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we took. Secondlty, does it solve the heat equation? Sure, because for each k,

we've just found that that solves the heat equation and now we're just putting

different ks together.

So that's the answer. So you might say, OK, perfection. Do we need finite

differences? I guess we do. This is typical of formulas that give the answer exactly,

but in terms that are not numerically convenient. Because to use his formula, first of

all, this this requires an integral, an infinite integral to find -- integral to find for u 0. u

0, u hat. To use this formula, we'd have to find this transform and then we have to

do this integral for the inverse transform, this integral for the answer u. Two infinite

integrals and not to mention the fact that on a finite interval, when x doesn't go all

the way from minus infinity to infinity, we have to think all over again. So we have a

nice formula for the answer, but -- it looks nice, but it's not numerically terrific. We

can get a lot of information out of this and there's one other special solution that's

also extremely informative. What if -- so I'm going to do a special case, but it's the

big case. What if the initial conditions is a delta function? What if the initial condition

is a delta function? An impulse at times 0 x equal 0, an instant source of heat at a

point source with finite strength, you could say. An impulse at times 0. For the wave

equation, what happened? That was like turning on a flash of light and it went along

the characteristics. For the heat equation, it'll be quite different. There aren't

characteristics here, but this is an extremely important solution. I think you could call

it the fundamental solution to the heat equation.

You may know what it is. You may have seen this formula. It's fantastic that we get

a formula for this one. You could say, we've got a formula. What's the Fourier

transform, what's u 0 hat of k for the delta function? 1, right? The Fourier transform

of the delta function is a constant 1. All frequencies are there in equal amounts. This

is a constant, so I can remove it. It's 1. I'm left with a specific integral to do. The

question is, can I do it? The answer turns out to be yes. You can do that integral

when this is a constant and that will give you the answer without starting value.

Let me just say what that answer is. u of x and t. This is the fundamental solution. u

fundamental, maybe I should say, because it's such an important case. is turns out
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to be -- it's not obvious what that integral is. By the way, normally -- let's see --

normally it's -- to get the answer that I'm going to write down, we take a kind of end

run on the integreal and I'm going to take a serious end run and write down the

answer exactly. Here's the key part of the answer.

It's a solution which starts from a delta function, spreads of course, and the shape

as it spreads is a bell. It's the famous bell shaped Gaussian distribution of e to the

minus -- so is it e to the minus x squared, I guess? Then always here comes -- that

scaler tells us the width of the bell. How far has it spread at time t? What goes there

is 4 t. That's the key observation and notice how x squared and t are coming in. It's

that ratio, x squared to t, that's crucial. That's the parameter again. Of course, we

need to multiply by a constant. How do I know I need a constant? Because the total

heat is conserved. So in other words, the integral of the delta function, the original

source of heat, was 1. The integral from minus infinity to infinity of the delta function,

which is all totally concentrated at one point is 1. So I need to put on whatever

constant it takes so that the integral of this thing shall stay 1 for later times. This is

one integral from minus infinity to infinity that we can do and it turns out to need 1

over the square root of 4 pi t.

That solves the heat equation. It's not a lot of fun to plug that into the heat equation,

but it's possible, right? The x derivative, the time derivative is going to be messy. It'll

have two terms. The x derivative will have two terms and they'll agree. The notes

will give one way to do the integral and get that answer. You see that that integral,

it's -- integrals with e to the minus k squared in them are impossible on a finite

interval, but here we're going all the way from minus infinity to infinity, which you

might think makes the problem harder, but actually it makes it a great deal easier

and we can get an explicit answer, a beautiful answer.

So we learn that the solution to the heat equation is coming from a point source, is a

bell shaped Gaussian curve that gets wider and wider as t increases, but I guess

you would want to look this see, what happens if t comes down to 0? Does that

really approximate -- I meant to say, does it really converge to -- this should, as t

goes to 0, this should go to the delta function, and in some way, it does. In some
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way, it does. It's wonderful. The delta function, of course, is 0 away from the origin.

So why does this approach 0 away from the origin? Suppose x is 1. Suppose x is 1.

Then do you see this thing going to 0 as t goes to 0? Look what's happening. As t

goes to 0, this part is blowing up, but kind of weekly. That's not a disastrous blowup.

Compared to this -- e to the minus -- let's say 1 over 4 t. As t goes to 0, that's e to a

very negative exponent. That's going to 0 very fast, much faster than this is going to

0. If you like to think of l'Hopital's rule or ratio or something, this quantity is going to

0 way faster than this one is and the result is 0, except at the one point, x equals 0,

where this is one. The fact that the total amount of heat stays at 1 tells us that the

delta function is the limit there.

Today was the heat equation, continuous case, with these explicit answers.

Then next time is tomorrow I guess, is the heat equation, finite differences. Again,

we'll have several difference methods and to compare them would be terrific.

Please think about that comparison with the heat equation and/or what I was saying

at the beginning of class, the deeper look at the comparison for the wave equation.

See you tomorow for difference equations for this problem. Thanks.
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