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PROFESSOR: OK. Good. So I decided to make today's lecture the one on linear programming and

duality, which I'd planned for Friday, and give myself two more days to learn about

ill-posed and inverse problems, and then come back to that Friday, so that we've

studied the limits in those problems of alpha going to infinity or 0, but the scientific

question when there's noise in the system is finite alpha and I want to learn more

about applications and examples.

Can I also say I'm very happy to have had volunteers for Monday and Wednesday

of next week to present, and if a couple of people might maybe volunteer for Friday,

to share Friday, I'll be very grateful. So you could see me after class, put a hand up

now, send me an email -- all those would be very good And again I would be

thinking -- since it's just next week I'm talking about -- that it would be essentially a

report on your Project One that you would use the overhead projector maybe, if

that's preferable.

OK. So I think you'll like this topic. It's kind of specific but widely used -- linear

programing -- used in business to maximize profits, to minimize costs. And linear

means that the cost function is linear. That's an inner product -- cx. c is a row

vector, x is a column vector , so that I'm following the conventions of this subject

here to take these different shapes, so let me indicate what the shapes are. But the

inputs are -- the data of the problem are -- c and A, an m by n matrix and b. So A is

m by n, b is m by 1, -- right hand side -- and c is 1 by n. And then the unknown --

this is the thing that we're to find -- it's a column vector -- n by 1. OK.

And the point is there are constraints and those are linear too. So it's rather unusual

to have a linear cost function. Right? Because when you maximize or minimize

some linear function, well, the thing is just going up or it's going down -- or in higher

dimensions the same -- and if it's going down, then the minimum is going to be at
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the right hand end. Or if it's going up, the minimum will be at the left hand end. And

if I'm in more variables, this idea will still be true that the minimum or maximum will

happen at the edges, at the ends of the allowed region and this allowed region,

called the feasible set -- so let me give name to this -- these are the allowed [?

axes. ?] These are the constraints, and that set is called the feasible set, feasible

meaning doable. So those constraints include inequality because we want finite

intervals, finite regions in n dimensions. And I drew a sort of quick picture so that

you have a model of this. So this is a picture with n equals 3 -- 3 dimensions, and so

the constraints x greater or equal 0, x sub 1 greater or equal 0, x sub 2 greater or

equal 0, x sub 3 greater or equal 0 -- that's what x greater or equal 0 means. It

means all components. So we're in the quadrant right? We're in a quarter -- 1/8

sorry -- we're in an octant -- 1/8 of three dimensional space, the positive octant. And

then if I draw maybe just one, just put in one equation, one plane, would cut off a

piece of that octant, so that Ax greater or equal b, depending on the signs, but the

feasible set could well be the tetrahedron, the little piece of the octant that's cut out

by this plane. Or if our constraint was an equality, the feasible set would be the

triangle. So Ax equal to b would lead to the triangle, and Ax greater or equal b

would be, if we pick the signs correctly, would be the pyramid, would include also

this corner, because there'd be some volume.

OK. So the feasible set is a polyhedron. It's like a polygon only up into n dimensions,

so we use the word polyhedron. And it's got corners, and the whole point of the

linear cost, the linear objective function cx, so this is just c sub 1 x sub 1 plus c sub

n x sub n. That's what that means. If I take derivative I get constants. I don't set

derivatives to 0 in this type of problem. I look at the end points, at the corners. And

that's where the minimum and maximum will occur. So it's just a question of finding

the right corner. That's the problem: how to find the winning corner.

It's an interesting competition between two quite different approaches: the famous

approach -- so let me write these two. The simplex methods is the best established,

best known, approach for solving these problems. What's the idea of the simplex

method? The simplex method finds a corner. A corner is a case where we have

some equality signs. A corner is the edge, the limit where maybe this one still has x
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sub 1 positive but it's down in this plane so it has maybe x sub 3 as 0 for this guy.

So that corner has x sub 3 equals 0 and it also lies right on the plane so it has Ax

equal to b. This corner -- well, I guess that corner has all these guys equal 0: x sub

1 equals 0, x sub 2 equals 0, x sub 3 equals 0, but Ax inequalities over here for this

corner that's hiding behind the face.

Anyway, corners are points where some of the constraints are tight or active and

others are not. Well, you might say just check them all, but the trouble is there are

lots of corners. If we're in n dimensions and we have m constraint equations, then

the number of corners goes up exponentially. So there's no way to check all of

them. So the simplex method had a better idea. The simplex method found one of

them -- and already that's a little bit of a job to find a corner, but finds one. And then

what the simplex method does, it stays entirely, it moves along the edges. So from

here it will look to see in which direction would the cost go down, because we're

trying to minimize the cost. So it would check these directions. Each of those

directions we're releasing one equality. We're allowing one equality to be an

inequality. and that moves us along.

So the simplex method has two steps. It checks each of these directions to find out

which way will the cost drop fastest. It chooses the direction in which the cost, the

gradient, the component of the gradient, you could say, along that edge is the

biggest, or maybe the most negative. And then, once it decides which way to go, it

goes -- maybe it takes this direction -- it goes, goes, goes, goes, goes until it hits

another corner. So that's the end of the simples set, when it reaches another

corner. That completes one simplex step. Then, from this corner, it will look to three

ways it could go here. Well, it's not going to pick this way because in this direction

the cost was decreasing or we wouldn't have taken it. We wouldn't have taken that

direction except for the cost went down. So if we came back, the cost would go up.

No good. So going down would be one of these two ways. Maybe it goes down in

this direction, so we decide on that direction. We follow it until we hit a new corner,

and eventually we're going to get to the winning corner because there are only a

finite number of corners. And how will we know it's the winning corner? Well, we'll
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know that corner is a winner if in every direction the cost goes up. If the cost goes

up in all directions along all the edges out of that corner, then that corner has won.

It's the minimum. I'm using linearity here -- the fact that you know everything by

traveling along, by looking along those edges.

So the simplex method is a big success. But in reality, in practice, it turns out that

the number of edges that you have to travel to get to the winner doesn't grow

exponentially. I mean in principle it could. People have dreamt up really desperate

examples in which following the simplex method you could take a long time, but on

average you don't, and in practice you don't. So it's a very good method and was

totally the method of choice.

But a competitor has arrived. And that competitor goes under the name of interior

point method, and you can guess what that method is doing quite different, totally

different system. That method is inside the feasible set. It finds a point somewhere

near the middle maybe. And then it does a normal gradient type approach from

your point. It figures out which way to move. It moves, but it doesn't go outside. It

doesn't even reach the boundary of the feasible set because if you reach the

boundary of the feasible set you're out of the interior and the method is not going to

operate. Well, that crudest method would be follow the gradient, but we know from

several situations that gradient descent can be less than optimal. So this is more

subtle. Well, Newton's method actually -- I'll explain.

So this is actually the content of my lecture -- this interior point method. And let me

just mention a few names. People thought of interior point methods long ago, but a

big splash came when Karmarkar proposed an interior point method and proved

that it converged faster than simplex methods in some problems. Well, he said all

problems, actually. His advertising of the message was pretty generous The sort of

claim that was around was ten times as fast as the simplex method generally, and it

was on the front page of the New York Times, and I remember going to a lecture in

Boston with lights, TV lights on and everything. Well, maybe his exact message now

isn't so much used, but you have to give him credit for stirring up the whole world of

optimization because the result of Karmarkar's method -- and there were others --

4



and I'll say barrier method, and that's what I'll try to explain. He stirred up the whole

world so that the experts in optimization began looking again at interior point

methods, seeing that they did have some merit, improving them. And now for, I

would say particularly for large, sparse problems, these are a way to go. These are

preferred now.

So this is the normal situation in scientific computing: that any message that's good,

it's still not good for everything. It's got it range of problems where it's successful

and a range of problems where some competitor wins. So that's the situation now.

These are methods. This is certainly not out of date, and I'm sure it's the method of

choice and it's carefully coded and well understood, but these are quite effective.

OK. So my job then is to say something about these interior point methods. And the

beauty of these is that the primal -- this is called the primal problem. Primal

problem. And often you write a (P) for primal. It means the given problem. And over

here is the dual problem. So you put a (D) for dual problem. [UNINTELLIGIBLE

PHRASE] It involves the same data: the same b, the same a, and the same c, but a

new variable y. And [UNINTELLIGIBLE PHRASE] in the original problem for the

constraints.

So I won't go at the dual problem exactly that way. I'm going to ask you just to

consider this problem and show you the relation between the two. So what I want to

say is that these two problems -- the primal and the dual, which use the same data

a b c, are intimately related, and sort of solving one solves the other one. Actually is

this it? That applies to the simplex method. When the simplex method finds the best

corner, we could read off of Lagrange multipliers, we could read off y. We could

read off the optimal y. So my picture was in the primal case, but there's a dual

picture in the dual case.

OK. So we have a minimum problem and a maximum problem, and I'm using this

word duality. So what I want to do is tell you how do we recognize the winning

corner in the primal problem, and it's beautiful. So at the best, so the optimal -- x, let

me call it x star and y star -- have min over there equal of max here. Min of all the
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cx's, which is cx star, equal to a maximum over all of the y's of the yb's, which is y

star b. So these are equal at the winner.

That's the essence of this duality. Duality is about two problems that use the same

data but they look quite different. You know they're using the data in different ways.

The cost function there showed up in the constraint here. The constraint b there

showed up in the cost function here. And even a got flipped, because if I use my

usual column vector notation -- if I just transpose this -- this would be a transpose, y

transpose, less or equal to c transpose. If I wanted to stay with column vectors y

transpose and c transpose, then it would be the transpose of a that would appear.

So I'll just put transpose with two exclamation marks.

That's typical. And you often see the word adjoint. So there are methods in

differential equations, in optimization, called adjoint method. Adjoint is just really

another word for transpose. It's a word that applies in differential equations as well

as matrices, so it's kind of a better word, you could say, where transpose we usually

apply to matrices, but totally the same idea, identical idea.

OK. So the wonderful thing is that at the moment of success, at the moment of

optimality, these are equal. A minimum equals a maximum. And that's one way to

recognize that you've succeeded, and that's one way to measure how far you have

to go with the duality gap. So the duality gap would be the difference if you had a

particular y that wasn't the winner, a particular x that wasn't the winner, the duality

gap would be the difference between cx and yb. And what I'm saying is that when

that duality gap narrows to 0, you've got it. When this narrows to 0, you've brought

cx down as far as you could, you've raised yb up as far as you could. And if you did

it right, if you've got to the optimum, then the duality gap disappeared -- became 0.

So that's a measure of am I at the answer, am I close, do you know if we're going to

do an iterative method as I'm planning. So that's the point, of course. These interior

point methods will be iterative. We said we never actually allow them to get to the

absolute corner until maybe at the last minute.

So here, let me draw a picture of how interior point methods might work. So here is

6



the feasible set -- some kind of a polyhedron, whatever. So think of that as a kind of

a diamond, a twenty-four caret diamond. OK? And start at a point inside. And

somehow find a gradient, decide which way to move And there'll be some barrier

here which is going to prevent us from reaching it, so we'll stop. So that will be one

step, and from here we will do the same thing, whatever it is. It'll be Newton's

method, actually. You'll see. It's just Newton's method. The most fundamental way

to solve non-linear equations is Newton's method. And it'll take another direction.

Again it'll stop, and the thing will follow some path. And then maybe at this point the

duality gap is very small. We'll realize that this is the winner. So we could at the last

minute say OK jump to the winner. But it's this path through the interior that we're

really interested in.

OK, so I'm giving a sort of general picture of it. And now I'm ready to do two things.

One is the nice little bit of algebra that says that this duality gap is always greater or

equal 0. OK so that's called weak duality. Weak duality, which is easy to prove, says

that always cx, for any feasible x, is greater or equal to yb for any feasible y. So any

x and y that satisfy the constraint. I should say satisfying the constraint. So weak

duality I'll now prove in one second, And the point is that as I push to bring cx down

-- minimize -- as I push to move yb up -- maximize -- they will meet at the winner.

OK, now how do I prove cx greater or equal yb? Let me try to prove that. Proof. OK

so look at yb. OK. Now so I know something about the constraints. Ax is greater or

equal to b. So this b -- I want to say that this is less or equal to yAx. Now am I

allowed to say that? First of all, y is feasible; x is feasible. So they satisfy. Feasible

means that these are satisfied and these are satisfied.

OK. And do you see that that's really all right? Well you might say no problem. Ax is

greater or b. It's obvious. But I have actually used one more point here, haven't I? If

I have an inequality, then I'm multiplying it by y, and it didn't change the direction of

the inequality sign, and that was because y is greater or equal 0. That's where that

paid off. So this used the fact that -- this came from the fact that y was greater or

equal 0 and Ax was greater or equal b. Those two facts meant that I could multiply

and preserve the inequality sign.
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And now I'm going to go to the next step: yA is less or equal c, and there is x.

OK, so you see that I finally got what I want: yb less or equal to cx. But what went

into that step? Well looking here, I had ya less or equal to c, and I also had x

greater or equal 0 by the feasibility of x. So that inequality I was allowed to multiply

by x because x is not negative. If x had been minus 1, then when you -- right, if I

have an inequality like 4 less or equal 7, if I multiply by minus 1, I guess minus 4

and minus 7, and the inequality switches: minus 7 is below minus 4. But that's not

what's happening here because the x is not negative, so this is not what's

happening, and I'm OK, so the conclusion was exactly what I wanted -- that the yb

was less or equal to cx. And you see how perfectly it used the four inequality

constraints.

OK. So that's the weak duality where the proof is easy. Just use what's given. The

duality, without the word weak, is the fact that at the optimum the gap is 0, and

actually we can see. That will tell us a lot. That will tell us a lot. When could this gap

be 0? So at the optimum, y star, equality is holding throughout. So if equality is

holding, how can that be? How can I take these -- of course the inequality, the x star

and y star are feasible. So if I just put stars on all these things, then I would have --

everything would still be totally true. But when I put stars on them, so I'm picking the

optimal guys, then equality is holding. I still have these inequalities, so what I want

to find is the optimality conditions. How are they related? If I have y greater or equal

0 and Ax greater or equal b and I multiply, how could I get equality? Right? For

example, if I have 3 greater than 0 and 5 greater than 2. If I multiply those, I get 15

greater than 0, I guess, and that's far from equality, right?

So how could equality happen? Well, the only way is if one or the other of these, if

equality holds in one or the other, then I would be OK. Yes, do you see that? If

equality held -- these are vector inequalities, so I'm going really component by

component. Let me write down the my conclusion and then you'll see what I mean.

So these are called the Kuhn-Tucker conditions. You've seen their names before.

And they're also called -- well long words -- complementary slackness. I'm using

words that, if you haven't seen the subject, you think OK, who needs the long
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words. But the idea of slack variable; slack is the difference. The slack is c minus

yA, or over here the slack is Ax minus b. These are the slack variables. w, let's say,

is Ax minus b. And of course it's greater or equal 0 that's the nice thing about slack

variables. You know you fix it so it's greater or equals 0. Here the slack variable s

for slack would be what? c minus yA greater or equals 0. And there's no slack when

s is 0. OK, so that's where the word slackness comes in. Slack is just the amount of

give in the inequality.

So what's the point here? I was looking at this guy, and the only way that I could

have equality here when I have inequalities there is for each component I'm going

to have to have equality. And how can I have equality on a component? Well, I

would have it for example if y was 0. Then when I multiply, I have equality. Right?

OK. Or I could have equality if I had -- let's see, so what I want to say? So I want to

say either y sub i is 0 or Ax sub i is b sub i. Equality holds in one or other of the two

inequalities, because then if I multiply them together, I have equality. Right? You

see that. If one of those holds, say this one holds, if y sub i is 0, then I certainly can

multiply the inequality by y and I get 0 equals 0. Or if Ax is exactly b, then multiplying

by y won't change. OK. So this is the complementary slackness, one or the other,

that has to hold to get equality.

Now what about this guy? Equality same idea here. I got the inequality by

multiplying these together. When will I get equality? Only if either x sub j is 0 or the j

component of yA equals the j component of c. Again, the same reasoning: that

when I multiply two things, if I get an equality out of two inequalities, then one of

those two at least must have been actually an equals; otherwise I'd still have a gap.

OK, so this is pretty important. These are the conditions -- these are our equations.

That tells us when we've won. So this actually holds towards the winners. It doesn't

hold for all the other guys, but at the winner because things are equal here. They

had to be equal at every step and therefore the Kuhn-Tucker conditions had hold at

the winner. So they hold at this winning corner when we find it. So the simplex

method chases corners, finally gets to a corner, and it would know it had got there

by the fact that it couldn't decrease any more. And if you look at the algebra, you
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would see that that tells you that the Kuhn-Tucker conditions are satisfied.

OK, so the only proof I gave was the weak proof, that cx is greater or equal to yb

because that's the nice one. I've proved that for equality we'd need these.

OK, now I guess I'm ready for the method. I'm ready for the interior point barrier

method that tells me how to compute. OK, so I'm at an interior point. What do I do?

OK, so here's the method; here's the barrier. I'll call it a log barrier. I'll solve the

problem of minimizing cx. I won't solve the exact problem. I'm going to minimize cx,

minus I think some little number times a barrier, which is going to be a sum of the

logarithm of the x's. This alpha is going to be a little bit positive. I'll take it smaller

and smaller because this part is really -- it's that that I really want to minimize.

Right? That's the original problem. This is the cost. I'm adding something to the cost

but I'd better just be sure that I've chosen the sign of alpha correctly. By the way,

this is discussed now in the latest version of my Linear Algebra and It's Applications

textbook, a fourth edition. Editions one to three of that book and others have

described the simplex method, and now it was just natural to include the interior

point barrier method.

OK, so why do I call this a barrier? Because if x sub i gets to 0, the log blows up.

The log blows down I should say -- blows down to minus infinity. I'm multiplying by

minus alpha, so I get positive. The combination blows up. It couldn't be the

minimum, so you can see the minimum is never going to make it to x equals 0

because at x equals 0, the thing I have here is plus infinity.

So now I'm just going to use gradient method. I'm going to solve this problem with

the constraints, of course, with the constraints, and set derivatives to 0. Now I have

-- you know it's not linear anymore -- the winner is not at a corner anymore. It's

somewhere in the middle. Calculus operates. I can set derivatives to 0. OK, so I

want to do that. And of course I'm still inside this feasible set, so let me see if I can

put down the equations and the constraints. OK, so I still have the constraints. Now,

forgive me, but I've made a change to Ax equals b. I could have started with that as

a constraint. I've made that change to Ax equals b. How have I done such a thing?
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I'm given the problem with Ax greater or equal b, but I'm also given the slack

variable w greater or equal 0. So I guess it's just a little tricks that's not worth -- you

could just take my word for it, a little trick. My new variable is the x's and the w's. m

plus n variables : the n x's and the m w's. And now, put that together -- so can I just

maybe do this over in the corner here? Before I start on this, I changed to a new

variable that that'll be x's and w's. And that will be greater or equal 0, right?

Because the x was always greater or equal 0, and the slack says Ax greater or

equal b is turned into slack greater or equal 0. And now that multiplies A minus i to

give b, because Ax minus the slack variable is b, which says that Ax minus b is the

slack variable w -- bring that over and that over -- and that's what we said was

greater or equal 0.

Do you see that I've changed to an equation by introducing more variables? Putting

the x's and the slacks all together in a big variable that I'm now going to call x. So

this is now the sum of the m plus n of these now because this is the new x and this

is the new A.

You might say why didn't I just start with equality constraint, and I certainly could

have done. But just to see that inequalities have their place too, and to see that we

can get between one and the other. OK, so now this is the problem with equality

constraint. So my new constraints are Ax equals b and x greater or equals 0. That's

the primal constraint. And what's the dual constraint? So the dual constraint is y

greater or equals 0. Right? And, OK I have to get this right because we're right at

the end. And the slack, let me just write the slack one. The slack one is s is the

slack. This is s. I'm going to transpose so that I have consistently columns vectored.

So that when I transpose it says that A transpose y plus s is c. Right? I put that over

there with the s and transposed to get column vectors. I like to have column vectors.

OK, so those are the constraints, but now what's the derivative equals 0 equation?

Derivative equals 0 is the derivative of this equals 0. So what does that say? That

says that if I set the derivative as a 0 that says that c sub i -- the x remember is, well

x has got all these components. c sub i is alpha and the derivative of log x sub i of

course is 1 over x sub i. So that's the equation for derivative equals 0. So this is
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what I'm solving. OK Equality is here, equality is here, equality is here but non

linear. This is of course non linear.

So Newton's method just says linearize. Newton's method is just linearized at the

point, and that gives you the direction to move. And you move that direction

because you've linearized. As you move, you're wandering a little away from

precision, from perfection, but if you don't take too big a step, Newton is safe.

Maybe since this is a course in scientific computing, I should've written on the very

first day in big letters Newton, because that idea of following the gradient is the

central method of solving non-linear equations. And then on the board beneath I

would have written in big letters Carefully because the derivative is a local thing.

And if you follow the derivative a long distance, follow the derivative here a long

distance out to here, who knows what -- you've lost the safety of Newton's method.

So Newton's method always comes in reality with some kind of a trust region, some

region where you can rely on the derivative being a reasonable approximation of

the way the function is moving. OK, so we do that here too. OK. maybe I won't write

out in full notation. What does Newton's method do actually? So Newton's method

we're at a particular x, y, s, and we've got to move. So the unknowns are --- the

components of x , the components of y, and the components of s. So Newton's

method takes steps: a delta x, a delta y, and a delta s, computes what those should

be, and then that gives the direction, and if you take them exactly, that's the full

Newton set, which you would be very happy to do because that gives terrific

conversion, but if it's too big a step, then you have to cut back. So the equations for

these are what you need so there'll be an A delta x will be 0. Because b isn't

changing. There will be a A transposed delta y, a transposed delta y plus delta s will

be 0 because the c isn't changing. And then we'll get an equation out of this, which

is a really significant one, but maybe time is running out on and I'm not going to do

justice to. But that's a non-linear term, where you see if I keep A delta x 0, then my

new x is exactly feasible right? If I'm at an Ax equals b and I move it by a delta x

that's in the null space, then I have -- All I'm saying is that when I take that step I will

have A x plus delta x still equal to b. Good. Constraints still satisfied. When I take

this step, since that's linear, the constraint when I add on the delta y and the delta s
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and the 0 I still have -- my new point still satisfies that constraint.

But this is of course not exactly satisfied. If I had the solution to this, I'd be done.

That's my problem. Anyway, so it's not exactly satisfied. Newton would tell you a

linearization of it, and you would move in that gradient direction to try to make the

things -- to try to make equality hold, because our current x doesn't have equality

hold. And of course the c is a transposed y plus s. So that equation -- You see

what's going on here? This is a transposed y plus s, and the x is multiplying those,

so there's a product there. And when I take the derivative it's a product rule. I get

two terms. Anyway, I get a third equation from here for delta x that connects delta x,

delta y, and delta s. I take that step and that's my interior point method. That's my

Newton step.

So maybe I just end by reporting results, so I'll end with just two comments. First is,

is the method any good? And of course you only know by trying. And the answer is

yeah. Typically you get the gap -- you get the duality gap down below 10 to the

minus 8, which is usually very satisfactory in 20 to 80 steps. You can never prove a

statement like that because you can always create some awful example, but this is

the typical performance of the method. Which is pretty good, regardless of m and n.

That's what's wonderful -- that the number of steps doesn't increase with the size of

the problem. Of course, the cost per step does increase with the size of the

problem.

OK so that's the results, and that's why the method is popular. And now I just

wanted to not leave duality, which is such a key idea, without going back to our

much more familiar problem of quadratics, where there are quadratic terms. And

the best model you remember was projection. You remember that we had a victor b

and we have the line, the null space of A. This was the column space of A. This was

all Ax's. And perpendicular to it was the null space of A transpose. All A transpose y

should equal 0. Do you remember this? This was the model problem for

understanding. So that the projection of this solved one problem. The projection in

the other direction -- we called that p. This was the projection p equal A times the

best x. The projection in the opposite direction found the e, the error, but it was the
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solution to the dual problem.

And now I want to say where was duality in this picture? Well duality was -- let me

call it e hat, the winning, the projection, the right guy over here. Or maybe y hat. OK

where was duality? Duality came in this case in the fact that it was Pythagoras.

Duality in this simple, beautiful problem was simply the fact that p squared, this

winner squared, plus e squared, was b squared. The winners were the orthogonal

projection.

And now where is weak duality? It's the last second of the lecture. Weak duality

says take something that's allowed, like that and take something that's allowed

here, like that. And then those are not the winner. Those don't deserve stars or

hats. They're not the winner. And compute that squared plus that squared. So this is

any Ax. So any Ax squared and any y -- let's call that y squared. And what is the

inequality that is satisfied by any Ax, like the wrong one here, and any y, like the

wrong one there, will satisfy. Pythagoras won't be quite right. It'll be Ax squared plus

y squared. What do we know about the sum of those two squares? It's greater than

or equal to b squared. The only way we get this thing split into two orthogonal parts

whose squares add up to b squared is right triangle. If I replace this by something

longer and I replace this -- I should take that error really. e is really b minus cAx.

That's what I should be putting here. This thing should be b minus Ax squared.

Anyway, the duality is in the fact of getting an equal sign there and weak duality is

the easy inequality that no matter what you do, you get greater than or equal. So

the duality gap is somehow the gap there, and the whole subject of optimization is

to bring that gap to 0. So this is the gap in quadratic problems, of which this is a

neat model and this was all about linear programming. And duality is present for

both.

OK, so Friday is the promised lecture on ill-posed problems. And meanwhile if two

people are willing to put up a hand now or email me later and say sure I'll take my

turn Friday of next week, that would be terrific. OK. Thanks. I see one hand. OK.
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