
MITOCW | ocw-18-086-21apr2006-220k

INTRODUCTION: The following content is provided by MIT OpenCourseWare under a Creative

Commons license. Additional information about our license and MIT

OpenCourseWare in general is available at OCW.MIT.edu.

PROFESSOR: Specific problem, and it's linear least squares problem, but it's got two terms. So

we're used to minimizing Au minus b square. That gives us the least squares

solution u hat to linear system. And usually the reason we have to go to the least

square thing is that there's no exact solution. Probably A has more equations than

unknowns. A is long and thin, and there's no exact solution, so we look for the best

solution, and we call it u hat. OK. But there are a lot of problems in which a second

square appears. There's also a Bu equal d hiding in the background. And so we

really have like two sets of equations. And we multiply that second square by some

factor alpha and that wise choice of alpha is usually a big part of the problem. And I

want to speak about some of the applications of this area. So from that point of view

of the normal equations, the system that you actually solve, you could say no

problem. If we knew how to do this, then we certainly can do both of them together

because instead of A transpose a showing up, we'll now have A transpose a plus

alpha B transpose b. That'll be the positive definite coefficient matrix on the left side.

And then on the right side instead of just the usual A transpose b, this term is also

going to give us an alpha B transpose d. All I'm saying is we don't need any new

mathematics to reach this normal equation. With the sort of the two terms normal

equation.

And another way to think of exactly the same thing is we're looking at the least

squares problem, where the two matrices A and B are multiplying u. And we have to

bits of data being B and d, and all were doing is the usual thing but with a weight in

here. And the weight is the identity matrix for the A part, and it's alpha times the

identity matrix for the B part. So this is our C right. This is our C, just to say that

really the notation that the formulation we have allows us to take this step, so C

appears here and A transpose was CB, c appears over here too, just as always.

OK.

1



But there are important questions. And of course always the first important question

in applied math is what problem are you solving? Why have we produced this class

of problems? And I have two answer. Let me just first, so we are sure what the

shape of these matrices is. A as always has more rows than columns. Of course u is

n by 1. it's just a column right. But A has too many equations, too many rows, for us

to get an exact solution; v on the other hand has few rows. It might even only have

one more. It's very common to add on one constraint or one term in regularizing the

situation. Anyway p is relatively small. So the total matrix AB has m plus p rows, and

the same n columns, and we're ready to go. But the two parts are different

somehow. They come for different reasons.

And now I wrote down here two places they come from. And these are big

applications of applied math. And one of them produces small coefficients alpha.

And what's the purpose of the Bu minus d term in that case, with just a small alpha?

The problem is that the A transpose A part is nearly singular or is singular. So that

the usual normal equation without the B would be in trouble, and this of course

happens pretty often. So to the idea of regularization is get some control of the

solution by putting in another term that keeps some control over u, and stops it from

just taking off as what happened where the or original normal equations would have

a very large u hat. So we're just like adding a little steady part that keeps it a bit

under control. And so the A transpose a is nearly singular in ill posed problems. It's

like giving aspirin to an ill posed problem, right. You don't fix it, but it can operate.

OK.

And where do ill posed problems come from? And I just wanted to say that I think

that fundamental ill posed problems in science is given positions. Suppose we know

that a mass let's say, is in certain positions at certain times, find the velocity. So we

often in applications have some way to know position, and want to know velocity.

And maybe you realize that that problem is not well posed, because velocity take

the derivatives. And if you take the derivative, that's not a good operator to invert.

Taking the derivative makes things very rough. All sorts of cases we're looking for

the velocity, and we only have positions. One that I think about is from GPS. So

2



GPS uses space based satellites, as you all know, to give you very accurate

positions. And somehow out of those positions, you get pretty accurate but not of

course as accurate as the positions, but you get decent velocities. And how? And

there is an example where you want to know the motion of course, to ask for the

acceleration would be asking for yet another derivative. You see why the derivative

is an ill posed thing?

Let me just say ahead of time, I'm going to make today's lecture about direction

number two, not the ill posed problems. So I'm just like throwing in some comments

about the ill posed problem, and then I'll have a weekend to think about those. And

then next week I'll come back to this ill posed problems. And specifically they often

come from inverse problems, is a big source of ill posed problems that need

regularization. It's just a very large class of equations. I mean I was just going to say

about the derivative example. Why is that so unstable? Well from the point of your

finite differences, if we have positions how do you estimate velocities? You take a

difference quotient, right. You take the position at this time, the position at a close

by time, and you divide by delta t. That's a reasonable start. But dividing by delta t,

that small number, is producing big numbers. Any errors in the position are

multiplied by 1 over delta t and blown up. And similarly in frequency space, where

the functions that we think about are the functions like either DI KT the derivatives

brings down the factor K. So high oscillations, that's the point. Oscillatory functions

can be pretty small, but their derivative can be enormous. So it's that oscillation

which is often associated with noise in the measurements. You know, noisy

measurements are jumpy, and when we go to take their derivative or their finite

difference, we get big answers. Anyway for me that's the model ill posed problem to

find velocities.

And how to do it? I mean a lot of thought is going into that. Let me leave it there,

and come back to it. But I say all this just to emphasize its importance. Not that we'll

completely solve it actually for GPS or for any other thing, it's just all we can do is

medicate. OK. Now this is the one that we can really solve. So this is a different

application entirely. In this application, this second term Bu equal d, is something

important, something that we want to enforce. It's a constraint you could say. And
3



one way to enforce it which fits this pattern is to take alpha very large, right. When

we take alpha large, we're putting a really heavy weight on that Bu minus d square,

and when we minimize, that weight will forced Bu to be pretty close to d. But of

course Bu equal d doesn't determine u. Everybody's got that picture clear? From

BU equal d has many solutions. And so the real problem that we're trying to solve is

enforce Bu equal d. But among those solutions, pick the one that minimizes the first

square, Au minus B square. So you see the difference? You're trying to enforce

something that the physics or the geometry, or whatever sources, has to be

through. And you can do it. And you're left with lots of options. And then the

combine problem attempts to pick the right u. OK. So that's the application number

two that I want to speak about today. And actually I want to give several ways to do

it. It's a very important problem.

And one way will be to actually solve Bu equal d. Find those solution. And you may

say well that's what we learned in linear algebra, that's the very foundation of linear

algebra is there a particular solution, right. Every solution is of this form particular

plus null space. Maybe I'll just point to the start of that approach. So want to solve

Bu equal d. And I'll come back to this method after dealing with the least squares I

approached. But here's really the direct approach. That if I solved Bu equal d, then

there's a particular solution that solves it. And then you can always add on the

general solution which is, sorry add on the null space solution - the solution of Bu

equals 0. And Bu equals 0 has lots of solutions. So we would have to find them. OK.

I mean that's what 1806 would naturally do, but actually never, I'm ashamed to say,

but I didn't do it in 1806. I never actually said how I would scientifically compute in a

stable way the solutions. OK. So I think that will be important. But that's not the only

way to do it. That's called the null space method. And sometimes it's the right

choice, sometimes not.

This would be called the heavy weight method, right. Put on a very heavy weight

and solve a standard problem. OK. So let me follow that one up. And then they'll be

a third method. And maybe there's going to be space on the middle black word for

it. And what would the third method be? That will be use Lagrange multiplier. This

4



thing is a constraint. I'll enforce it by a Lagrange multiplier. OK. That's coming next.

The way I'm enforcing it right now is by a heavy weight. OK. One reason for the

popularity of this method is you don't have to do any new thinking. You just create

these equations and solve them. Where the other methods maybe ask us to think

separately about the constraint. Here we don't have to things separately, we just

create this normal equation, we solve it, and we get an answer u hat. Maybe I

should call it u hat alpha, because it depends on the eight alpha certainly, which we

hope is near the exact solution. The exact solution being the one that exactly solves

Bu equal d. Because u hat alpha will not exactly solve the Bu equal d. But we can

find solutions that do, and then among those we can minimize Au minus b square.

OK. So just a word about this heavy weight method. OK.

Well first an interesting point. A point that I think it's sort of interesting. I want to let

alpha go to infinity and see what happens, right. Everybody figures that as alpha

goes to insanity, I'm going to get the right answer. Because as alpha goes to infinity,

it's going to more and more enforce the constraint Bu equal d. And then with that

constrain enforced the other part of it will find the best u and that's great. But let

alpha go to infinity in this equation, and what happens? So this is just like a side

comment just to say alpha, you know, taking a limit you got to think about doing it

right. Well let's see, if I let alpha go to infinity as it is, that'll be infinite that infinite, I

won't know what's going on. Let me divide by alpha before I let alpha go to infinity.

So if I just divide everything by alpha -- can I do that with an eraser here? I'll divide

by alpha. So there's a 1 over alpha here. I divide this by alpha. And this has a one

over alpha there. And now if I let alpha go to infinity, I get something sensible. This

goes to 0, right, alpha going to infinity getting bigger and bigger. This goes to 0. So

what do I get in the limit? I get that this equals this in the limit. So shall I put that up

here? Well I'll put it here, because I don't like it frankly.

So I'll just squeeze it in this little spot. That if I let alpha go to into infinity, so 1 over

alpha goes to 0. I get B transpose B, u hat infinity shall I call it? Equals b transpose

d. And I guess what I want to say is from that I don't learn a whole lot. because B

transpose B is a singular matrix, B transpose B is a matrix of only rank p, it's very

singular right. B had this crazy shape, long and thin. B transpose B will be tall, B
5



transpose B will be a large matrix, but its rank will only be p. It's an n by n matrix of

rank p, and it's singular and who knows what's going on there. That little side issue

was simply to say that you can't just let alpha go to infinity and central equation

there, and expect to see what's happened. OK. So somehow there's more to it than

that. So let me put alpha back where it belongs, and think again. OK. And I guess by

thinking again, I might as well think in terms of this way of writing it. Because I

recognized this right, this is exactly the framework that we've developed.

So this is the least squares problem. I just want to write down the saddle point

matrix that goes with this least squares problem. What is the saddle point matrix?

Do you remember? The saddle point matrix S. So now I've got an A and a B here.

So it's going to be larger than I have my usual 0 block. And I have my usual A

transpose B transpose block. And what block goes there? That's the C inverse right.

It's our usual C inverse A, A transpose 0 that we're totally accustomed to. But now A

has grown into AB, 0 is still 0, a transpose is still the transpose, and up here is

transpose inverse, and since C was this, C inverse will be the identity, and the

identity over alpha. OK. So that's my S alpha you could say. So my equation is

alpha, what's written as a block equation. What are the pieces of it? u is the guy that

I'm looking for, the u hat alpha. And there was a Lagrange multiplier that came. You

remember that's how we got to a block form from a scalar form. And I guess I

usually call it W, so I'll stay with W for here. OK. So that's what multiplies Wu. And I

think it gives a B and it gives a d from this Au and Bu, and I think here if gives a 0,

because we didn't have any. OK.

What am I doing here? I'm just writing the problem in a way where I can let alpha go

to 0, and see the limit. So let alpha go to infinity, this is transpose part. So this will

go to 0. So this approaches the S infinity, W infinity we could call, u hat infinity is

now, well you see what the limit, is that's 0 in that block. This is A, this is B, this is A

transpose, this is B transpose, this is our usual 0 block, multiplying our same W

infinity, u hat infinity, equaling our same B, d, and 0. This is the limiting equation.

And it's great. This is the equation determines the limit, as alpha goes to infinity that

it determines the best u. This is the problem that we really want to solve. Maybe

6



that's what I should say. Do you see the constraint Bu equal d in here from this

middle block row? That say 0, 0, Bu hat is d. So we've introduced the constraint.

The first part is W infinity with an Au infinity, that's the usual error term, the thing

that we probably can't make 0. And then this is the usual Legrange multiplier terms

from there.

So I've spoken pretty quickly here, and let me just conclude. This is the limit

equation, is the correct limit equation. This is the limit equation that we want to solve

one way or another. And taking alpha large is one way to get near the answer, but

we'll look at other ways now. So this is really the correct equations to solve. The

saddle point Lagrange multiplier route. OK. So let me summarize what I've done so

far. My problem is when Bu equal d is a constraint that I would like to satisfy, and

one way to do it is to take alpha, you know, pretty near the largest number that the

machine will hold, say 10 to the 15. Put a really heavy weight on this. But of course

when you let alpha be 10 to the 15, you can see that there's like some possible

problems here. When you let alpha have an enormous weight, you're really tilting

this matrix so strongly, you know, you couldn't let it be 10 to the 20 in single

precision or you'd wipe out A transpose A. So it's a balance here. So I guess

probably a lot of a numerical analysts would say wrong way to do it, the right way is

solve this equation or, else do it this other way. But a lot of people with codes say

OK, you know, you're going to be a nervous nelly I'm just going to use my code. And

that's quite normal, quite human response. OK. And this will frequently succeed.

OK. So that's one method to do it, not the method that professionals in numerical

analysis -- maybe I'm thinking for example the book by Golub/van Loan, if you know

that book, that would discuss this problem. And it would actually discuss this third

method, this null space method of solving. OK.

Maybe I'll go to that null space method. So this was one way. Another way is solve

Bu equal d. And remember again, we only have p equations we have n unknowns,

so there's going to be freedom in the solution. So we have to identify a particular

solution, there's a lot of freedom in that particular solution, and then we can add to.

The null space is going to be n minus p dimensions, n minus p degrees of freedom

in the null space. That's the dimension of the null space, n minus p. I'm assuming
7



that b has full rank p, but p is a small number compared to them. OK. So how do

you find a particular solution? How do you find the null space solution? As I said,

that's what I should be explaining in 1806. And of course, we do it in 1806, but we

do it with a 3 by 3 matrix, and we practically, you know, we do it by hand, where

here we're talking about matrices of order thousands or millions, we don't do those

by hand. And we better not do it in an unstable way.

So the question is what's a good way to do it? And really the heart of modern

numerical analysis is orthogonalize stuff, get orthogonal vectors. Because if you

have orthogonal vectors, they don't get out of scale they. The numbers involved

don't become unstable. And the standard orthogonalization process is Graham

Schmidt, that's right, those are the words we all think of. If I have a bunch of

vectors, I have to make them orthogonal, I want to make them orthogonal, well

Graham Schmidt is what we think of. But actually math lab doesn't use Graham

Schmidt, doesn't use the usual Grant Schmidt as Graham Schmidt thought of it. Mat

lab goes a different route to the same conclusion.

So let me just remind you what Graham Schmidt produced. And let me put in the

name of the numeric analyst long after Graham Schmidt, it's Householder, you

know, the guy from Tennessee with good ideas. So he had another way to the

same answer, which is this factorization. So we take our matrix, often it's A in 1806,

and we factor it, we want to or orthogonalize its columns. So the columns of A get

orthogonalize into the columns of Q. So this has the orthogonal columns. And then

of course there's some connection between the original columns and the orthogonal

columns, and that connection is by triangular matrix R, upper triangular. I don't

know if you remember that from 1806. What I typically do is I explain Graham

Schmidt as they knew it, and then at the last minute I pull Q and R out as a way to

express the result. OK. So it's the result we want, and not the particular Graham

Schmidt way to get there, and Householder produces a better way to get there. OK.

But the main point is that if a matrix has independent columns, or even if it hasn't,

but if it has independent columns and we know everything about it, we can

orthogonalize those columns. Here's what I'm leading to, this B transpose I'm

8



remembering, has this shape because B had that shape, so it's B transpose that I'm

going to do Graham Schmidt, Householder use. The command in math lab is QR

equals, with Graham Schmidt we could have used the letters G and S but since we

don't use their actual anymore, we could use the letter HH for Householder or

something. But it's QR of, in this case, B transpose is what we want. OK. Very

frequently used command in math lab produces is Q and R. And it produces a

square matrix Q, where these columns, the columns of the first part Q1 transpose

are orthogonalize versions of these columns. And the R just tells us the connection

between them. Then it also produces, and this is handy as you'll see, the algorithm

also produces n minus p more columns, that are orthogonal to these guys. So it

produces a complete orthonormal basis, a complete set of n columns altogether. Q1

transpose has the column that really are associated with these problems. And these

are going to be associated with the null space. So out of this I see that actually B

transpose is Q1 transpose R. So you can say this is the reduced factorization with

only p columns, and this is the full picture with the other n minus p columns that are

orthogonal. And the reason that's handy is they tell us about the null space.

So now I want to identify out of this a particular solution and the general null space

solution. OK. So what are those? So particular solution is going to use this part. So

let's see, I want a particular solution. So B transposing that is R transpose Q1. OK.

So now I'm prepared to solve. Step one is the particular solution. I want to get be Bu

particular equal d. OK. But now I know B is nicely factor. So this is R transpose Q1 u

particular equal d. So now comes the computation the code has to do. It has to

invert that to get Q1 times u particular equals R inverse transpose d. So it had to

solve a triangular system, but of course a triangular system is quick to solve. That's

a good part here. And then the final step to get u particular, I have to put the inverse

of that guy over there, because this has orthogonal column, that's just Q1

transpose. So there we go. That's the inverse of R. So that's what I should've done

in 1806 and never did, and you get to see. What's a convenient particular solution?

Everybody knows we got a whole selection of particular solutions. We want to

choose one that's nice and stable. And the reason it's stable is that it works with

orthogonal columns, orthonormal even, and triangular matrix for which linear

9



systems are highly active. OK. So that's the particular solution.

Now what's the null space solution? What are the general solutions to null space

part? What are the solution to those? Well I can just go down the same steps. This

is R transpose Q1, u null space equals 0. I multiplied both sides, this is a nice

square and veritable matrix, and multiplied by its inverse kills that. So now I have

Q1. Q1 is really the heart of B. So what vectors are perpendicular to Q1?

I hope I've got this right. It's easy to mix up a transpose in the process. So let me

just pause to be sure I'm doing it correctly. OK. I hope. Did I check that I get it right?

Yes. OK.

I could have written of what B is here, since I have B transpose as a product. B is

R0, Q1, Q2. OK. And I want to multiply by u null and get 0. OK. So what should u

null be? This part is giving us a 0, so this is like gone. So you see the two are the

same. So what vectors are perpendicular to those? The answer is the u null is a

combination of the columns of Q2 transpose. It's the Q2 part that's telling us about

the null space. It was the Q1 part that gave the particular solution, it's the Q2 part

that gives the general solution. In other words, u null is Q2 transpose times any

vector, let me call z, this is any z. OK. Now this has my n minus p degrees of

freedom. Sorry I'm trying to do quite a bit here. I'm trying to say how you actually

solve rectangular systems when they're not determinate. There are many solutions.

This is a good particular solution to find, and this is a good way to find the general

solution, the null space solution. This is a combination of the other columns. OK.

All right now we're done really, because I now know what u looks like; u looks like

this part which I've computed and this part which has the freedom. Let me put those

two parts together. So now I want to minimize -- so I'm near the end here -- Au

minus B, but Au is u particular, and I have u particular here. Q1 transpose r minus

transpose d, that's u particular, plus u null, and that's this. This u null was also here;

u null was any Q2 transpose z, right. All that is u, AU minus B. OK. Up to possibly

screwing up on some transposes, this is the right method. So this is a fix solution. I

just want to write that as a different way. Minimize A Q transpose z. It's now we're

10



minimizing over the z's. So u had n components, but somehow p degrees of

freedom were used up by the constraint Bu equal d. And we have the n minus p

true degrees of freedom are in the z. So there's this minus the B. This is all known

stuff, A Q1 transpose R minus transpose d square. OK. I'm there.

So this is a standard minimization problem. Minimize, shall I call this A tilde z? And

I'll call all this stuff B tilde. And the solution is found from the normal equations A

tilde transpose, A tilde times the best z, I'll put a hat on it to emphasize that it's the

great one, is A tilde transpose B tilde. OK. Finish that process without leaving myself

a lot of time for the other method.

Conclusion here that after you've done the QR stepped, the QR command, and

then after you solved a linear system with the r transpose, and you've multiplied by

Q's, and you've ended up with this problem with a new matrix A tilde and B tilde,

then you just do the normal equation. The web will have the code that takes those

steps, reaches this conclusion, and solves it. OK. So that's the null space method.

So z has p minus n components, n minus p components if p is near n, then they're

not many z's and this is highly efficient. OK. So the null space method is one way to

go.

Can I just in the remaining minutes go back to the Lagrange multiplier idea? so

what's the Lagrange multiplier idea? So let me write the problem again as Lagrange

would like it. Minimize Au minus B square subject to Bu equal d. That's the problem

we're solving. I should of written it earlier. Let me put a star here, because this is

our problem. OK. So one way to tackle it was take that constraint give it a heavy

weight. That was method one.

Method two was solve this constraint in full detail, get the z's that remain as degrees

of freedom, plug in u particular plus u null space into here, and then you have a

problem in the z. That's method two. Now, so method three is Lagrange. So method

three would say OK, what does Lagrange do? L, we call it the Lagrangian, e takes

this Au minus b square, and adds to it some Lagrange multiplier, and all the u's are

maybe the standard lambda, times Bu minus d, right. That's Lagrange's idea. You

11



recognize Lagrange's idea. Takes the constraint, multiply it by a multiplier. In fact

this is p constraints, so p lambdas. Lambda's a vector of p multiplied. Not just a

single one, because we've got the p constraints. And now what does Lagrange do?

He sets the derivative dL d lambda. Well, so let me do the dL du first. He sets dL du

to 0, and dL d lamdba to 0. I could've started out with this method, because it's

going to lead us to the equations faster.

What equations do we get from dL du equals 0? What's the gradient with respect to

u? That gives us A transpose Au. Oh, probably we want a 1/2 here, so that numbers

come out right. We get A transpose Au, and another u part will be the B lambda.

Taking the derivative of u will produce a B transpose lambda out of that. Yeah a B

transpose lambda out of that. And then in here will be a linear term in u that we

might as well put on the right hand side as a transpose B. Familiar. OK.

And what about dL d lambda? Well that's just our constraint, Bu equals d right.

Having built in the constraints, when I take the derivative with respect to lambda, the

constraint just comes back again. So this is now method three. Solve that system?

And I guess what I want say in the remaining 30 seconds is that solving this system

is the same as this one. Those two are exactly the same. So that's a system with

three parts, But maybe I can even get there. Can you see that if I take this part and

I said subtract A transpose those times the top row from the bottom row, what will

that give me? Let me just hope that it works, well I won't actually. Time is up, it's

asking too much to do even this one piece of linear algebra tat can be in the notes.

So this system that we got as the correct limit equation is exactly the same one that

Lagrange gets. So that's one way. This is a system with n plus p unknowns. That's

the price you pay for going Lagrange's route. You had add p unknown. This was a

system with n minus p unknowns. That's because you're using the constraints to

reduce the problem. And the original method one was a method with n unknowns,

the unknowns and u. So you have the choice n plus p that Lagrange would like, and

n minus p that Golub/van Loan would prefer. And usually it's method two or method

three is recommended, but method one often used.

12



OK. So that's the lecture on this point. That's today. And then next week comes the

whole class of problems like finding velocities from displacements, where alpha is a

small parameter. And then after that come discussions of the completed project

ones, and the upcoming extensions into project two. OK.

See you next week, thanks. Good.

13


