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PROFESSOR: So we started last week on the big topic for the rest of the semester, optimization.

Maybe can you close that door or just part way anyway. Thanks. Great. That's

perfect, just like that.

So, since it was a few days ago, I wanted to recap what I did in the first lecture

about optimization, which was to pick out the least squares problem as a beautiful

model problem. I followed that through -- the input is a matrix a rectangular, a right

hand side b probably measurements. We would like to get au equal b but we can't.

We got too many measurements. We do the best possible, which is the solution u

hat of this normal equation. Then I rewrote the normal equations -- well, I also drew

the picture that you see over here on the left. The picture that shows the two

optimization problems at the same time.

Here is the vector b. Here are all possible au's -- this is the column space, this is all

au's. The best au was the projection. The error e was what we couldn't get right, the

part that's perpendicular to the column space we can't help. It's the solution to

another projection problem that e is the same -- of course, it's the same over here --

as projecting b onto this perpendicular line, which is the line of all vectors, a

tranpose e says -- what that says in words is e is perpendicular to the columns of a.

I've drawn it the best I could as a perpendicular to the columns. So that we have a

plane of columns -- this is like a 3 x 2 matrix. We have a plane with the two columns

and the perpendicular line.

Then just near the end, I said that it would be great to have -- this model would be

almost all we need except it should have one more matrix and I call that matrix c. I

want just to show you quickly where that comes. So this is all section 7.1 of the

notes, except that these words are not yet typed. So they'll, as soon as possible,

and an updated 7.1 will include this, what I want to do. Because I think it's the very
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best introduction I could give to these pair of optimization problems. You might think

who needs optimization. Your main activity might be solving differential equations.

So, can I just take a time out here because I happened to see the homework

upcoming. I think it's 16930, so it's a course a little bit like this, only the first word in

the course title is "Advanced," and our first word is "Introduction," but, of course, it's

the same course or same stuff. This is the homework that I don't think has even

been assigned, even been handed out yet. But I just thought it's a great example of

a applied, so that you see where optimization appears and what's involved. So

differential equations are involved, but also you got something that you want to

optimize. So I just wrote it on this board and I simplified it a little over the homework

that they'll actually get.

so here's the problem. We want a certain distribution of heat. So I could draw a

picture. We want a heat distribution for whatever reason that maybe goes like this

over the integral zero to 1. What do we have at our disposal to get the heat to be

that way? Well, we've got sources of heat. But we don't have a continuous source,

we only have n parameters to play with. I mean right away you recognize an

optimization problem. We're trying to get this function here u knot of x. We're trying

to match a function, but we've only got n parameters. Those will be the right hand

side. So what we're allowed to choose, we can put in little space heaters, and we

can turn them to the temperatures we want to -- temperatures s1, s2, s3. That was

probably a stupid choice to put an s for down there because I don't even know if

negative heat is allowed. Anyway, we wouldn't want it if we're aiming for that

distribution.

Now you understand the s's are not supposed to match that u knot. The s's are the

sources of heat, and the u's are the outputs, the distribution, and they are controlled

by a differential equation. What we control is the right hand side of the equation, but

we only control n parameters. Then we have to solve the equation and find out what

distribution that gives. So that's all like differential equations, we know how to do it.

It's one dimensional in this example, so straightforward.
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But now comes the optimization part. We take this result and we compare it with the

desired result. So the actual result from some source of heat might be something

like that. We want this u of x, the heat distribution that we're actually producing to be

as close as possible to u knot. Close could mean different things, but if we measure

closeness in this integral square mean square sense, then we're going to have nice

problem. In fact, we're going to have a linear -- everything's linear right now. Well,

everything's quadratic here, so when we minimize it's going to give us a linear

equation for the s's.

I just think that's a good model problem. A good model of what we might do. I think

actually in the problem to be assigned -- well, it's not a big deal for us. There is

convection as well. So this is a pure diffusion problem, just the second derivative.

We know very well that if there was a first derivative in there, the stuff's convecting,

passing through the region. So if I put on a convective term, cdudx, how does that

change the problem? Not in a big, big major way, but one thing we can guess is that

now that is not a symmetric term, right. We've seen the difference between first

differences and second differences, first derivatives and second derivatives.

So now it's a little trickier and it's not symmetric. So somehow there will be a primal

problem, this one, and there will be a adjoint problem, dual problem, perpendicular

problem, whatever name you want to give it, just as there is in our very first model

over there. So that's my sort of quick look to kind of put on the board one example

that I didn't invent, that came from applications and gives a sort of typical of what

you have to do. You control an input, you get an output, so that's the analysis

problem. Find the output. But then comes the optimization problem -- make that

output close to something that you wish. So what's the typical algorithm going to

do? It's going to make a choice of s, it's going to solve the analysis problem for the

u, it's going to look and see what the error is, it's going to figure out probably the

gradient somehow.

What's the steepest way to make it closer? That's going to lead us to a change of s.

We use a change of s, the new s, solve that, and iterate. That would be a typical

algorithm. We might be able to shortcut it in a model problem like this. But that's
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totally the typical optimization idea, is an analysis problem and then figure out a

gradient to get a better source back to the analysis problem with the new source.

What the algebra, the math, has to do is those two steps of figuring out OK, how do

we improve the error, how do we reduce the error, what's the steepest direction?

Somehow we got to compute a derivative. Actually, that's what this month is about.

Derivatives that are not just like the derivative of x cube or something.

I often wondered how many presidents could take the derivative of x cube and I'm

not sure. Anybody occur to you who you could count on being able to take the

derivative of x cubed? I don't think the current president would know what it meant.

But I think Carter could have done it, because he went to the Naval Academy.

Jefferson was probably -- he knew everything. I don't know. Anybody else has

another candidate they can tell me. So there is our problem -- finding derivatives

that would be definitely beyond the capacity of the White House.

Now I want to stay with this model a little more because it's the perfect model. So

this was the like model 1, unweighted ordinary least squared, and it produced the

identity matrix in there. I mentioned last time what I want to do, the more general

model has another symmetric positive-definite matrix in there, but not necessarily i,

and it comes from weighted least squares. So that's what I'm going to talk about.

So what are weighted least squares. Well, you've got these measurements and you

think they maybe don't all, maybe they're not independent, maybe they're not

equally reliable. So you weight them by how reliable they are. A more reliable one

you would put a heavier weight, w, on because you want that to be more important.

So, you change to this problem. But it looks practically the same. The only

difference is a has become wa, b has become wb. So the equations will be the

same, but a is now wa, b is now wb, and those are the equations. I guess I should

call, just to make clear that u is a different u, that the best u now depends on the

choice of weights. I should really be calling that u -- somehow indicate that it

depends on the weight.

Now they key nice thing is that if I write this out as a tranpose -- can you just write
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this out. You get the a tranpose, and the a is over here. But what's in the middle?

What's this matrix c -- I jumped the gun and called that matrix in the middle c, but

how is it connected to w? You can see it here as c is w tranpose w, right? It's just

sitting there in the middle. That's great that the fact that the combination w tranpose

w is all you need to know. So we can forget w in favor of -- I'll just put it here -- w

tranpose w is now given the name c, and this matrix is symmetric positive-definite.

So it's a great matrix and it's exactly the one we want. This is exactly the equation

we want.

So if I go back to writing it in this -- you know, this was the equation. You remember

the point that we could go directly to one equation for the best u, or we could keep

our options open and have two equations that led to the same one. They're totally

equivalent. But the two equations will give us not only u, but the error, b minus au,

as an other unknown. That's what we did up there. So we had two equations, and if

we eliminated e we got to this. Now I want to have two equations, and if I eliminate

e, I get to that. So let me see what those would be.

Well, here's one of them. a tranpose c -- e is zero -- you see, that's the only

difference really. That the weighted normal equation, I just took a tranpose c, and

then I took the b minus au together, and this is what I'm calling e. So one way to do

it is just the new guy is just now e plus auw is still b. But now a tranpose ce is zero.

Good deal. I mean that's quite nice. It isn't absolutely perfect though, because I've

lost the symmetry. I'm putting a c in there and I don't really want it. I want a c but I

don't want it there. So, I just make a small change. I'm going to introduce a new

unknown that I'll call little w, apologies for the fact that it's also a w, it just happened

to fit. That'll be the ce.

So I'm just calling this a new name here. So that now my e -- of course, if I just

invert, e is c inverse w. So now I'm just going to write these equations with w instead

of e because I like it better. So this equation is now a tranpose w equals zero. This

equation e is disappeared in favor of c inverse w plus au equals b. So that's the

system that I really like. That's the saddle point system, the Kuhn-Tucker system,

the primal dual system, the fundamental system of the whole subject in this linear
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matrix case. We haven't got functions, we got vectors, and we've got symmetry, and

we've got linearity, and we've got a saddle point matrix that's now the s -- well, let

me just change it here. It's just changed to this, c inverse. That's the fundamental

matrix of the whole subject. So, s is the saddle point matrix.

So I wanted to get that far. You see that the whole picture was elementary linear

algebra. Let me come back to the elementary figure that illustrates what's the

geometry. How was the geometry affected by introducing this guy w, this weighting

matrix or the c equal w transport w? Well, here was the picture from last time. A

right angle picture. This was a right triangle. This line was perpendicular to that

plane, but not anymore now. The second one it's a tranpose ce is zero. That's still a

line, but it's not any longer perpendicular to the -- this is still all the au's. This plane

is still the column space of all the au's.

We have the same b, but you see the problem is it lost its 90 degree angle, because

the projection is now a projection, it's now an oblique projection, it's slanted. This is

the best au, and if I occasionally keep up-to-date I'll put that uw there. There's still

an error e, and this is still a parallelogram but it's not a rectangle anymore. Forgive

my enthusiasm. I'm sort of happy that the picture and the algebra both come out so

neatly. I totally agree that at this point I'm asking you to follow a model without

giving you an application, and that's one reason I threw in this mention of a specific

application that came from somewhere else. But this is the picture there.

So I'll say one more word about the picture. I said that we lost the right angle. We

lost perpendicularity, and, of course, literally speaking we did. This is no longer --

this is not a right angle anymore. This is not a right angle anymore. It's not a right

angle in the usual meaning of right angles. It is a right angle in the inner product

that's associated with c. In other words, right angles here mean x transpose y

equals zero. That's the idea of a right angle, right? x perpendicular to y, and they

have different letters here.

Now over here I still have perpendicular, but I don't -- this is not the right inner

product anymore. It should be a weighted inner product, weighted with this c in the
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middle. So that's really what I mean by c orthogonal. Maybe I'll put those words

down. So this weighted thing is -- if I can squeeze it, I doubt if I can -- is c

orthogonality, weighted orthogonality. So let me circle the whole thing. The c is the

w tranpose w. Just to say that we aren't giving up on dot products and

perpendiculars and good equations, we're just changing them by inserting c every

time in a product. What it means is that this is the natural inner product for the

particular problem. This is the natural inner product for Euclid, right? But then from

some specific application like this one or a million others, they have their own

natural inner product, and the inner product for that particular problem would be

one of these guys with some kind of a matrix c showing up.

So least squares and weighted least squares, that's my example one. Now I'd like to

give a second example, a more mechanic -- will come closer to mechanics.

Because this is least squares, statistics, algebra. But let me put on the middle board

an application out of mechanics. It will be, say, I'll make it small and just a couple of

springs with a mass between them and fixed at both ends. So this spring extends by

some amount. This spring extends by some amount. There's a force on this mass.

So there's a force on there mass, maybe just gravity, f. That's the external force

from the mass of that's here in between the springs.

Then also acting on that mass are spring forces. This spring is pulling it up, right?

There's a spring force, w1. Here, do you want me to draw -- really which direction is

this? I'm going to draw it this way just to show the w2 drawn that way would actually

be negative, because I think that this spring would get compressed, right -- this

mass is pushing it down. This spring would be under compression. It would be

pushing the mass back up. So the w2 in that picture would be negative. So this w1

will actually be positive and go the way the arrow is showing. This w2 would actually

be negative and go not that way the arrow is showing.

But what's the -- oh, what equations have we got then? What's our optimization

problem? Well actually, we have a choice. We could work with equations, period.

Actually, one of the equations is pretty obvious. This mass is an equilibrium. So w1

is equal to w2 plus s. So it doesn't move. Or you might prefer me to write it, I would
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rather write it, with w's on one side and source terms on the other. So that's the

equilibrium equation.

So what decides, we want to know what these w's are, and these springs are

extended. So that first spring is expanded by an amount e1, and this second spring

is extended by an amount e2. Stretched or compressed. e1 is probably going to be

positive here -- that spring's going to be stretched. This spring is going to be

compressed, so that e2 is probably going to be negative. What's the mechanics

here? Well, I can state it two ways, as I said. I can state the mechanics in terms of

equations -- force and stretching elastic constant. That's how we did it in the first

semester, 18085. It's a little clearer because simple equation [UNINTELLIGIBLE

PHRASE]. Or I can state the problem as a minimization of energy. That's what I

want to do today in 1806. So I want to minimize 8.6. I want to minimize the total

energy. The energy in these springs. Subject to the constraint -- this constraint,

equilibrium.

So that's the optimization statement of the mechanical problem. Well, I guess all

that remains is -- well, I guess what remains? First of all, I need an expression for

this energy. If the springs are governed by Hooke's law, then it'll be pretty simple. If

they're real springs that don't quite obey Hooke's law then there'll be none -- no,

there'll be fourth degree, sixth degree , whatever, terms in the energy. It's like the

energy in the first spring plus the energy in the second spring, anyway. e in the first

spring, and the energy in a second spring, and, of course, the two springs could

have different spring constants. So those e's -- I'll make life easy in solving, if I

choose Hooke's law, if I choose the energy to be just a square. The constraint is

linear, so that'll be the model problem. And actually, that'll be the kind of problem

I've got here.

One reason for introducing a new example was to get some mechanics into the

lecture, but also to get a problem where we're doing a minimization but we've got a

condition on the w's. The question is how do you find a minimum? You can't just set

derivatives of the energy to zero. You would discover w1 equal w2 equals zero.

Nothing happening. That would be the minimum. But that minimum is ruled out, that
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solution is ruled out because we have this constraint. We've got to balance the

external force. So this is the question and you'll maybe have met this question in

other courses, but it's essential. How do you deal with minimizing when there's a

constraint? I guess in some way we had it over here. We were minimizing

something -- well, the minimum would be, take u equal u knot. But no, there was a

constraint that u had to satisfy a certain equilibrium equation. Here it was a

differential equation so that problem is a little harder than this one where the

equation is just discrete, one simple equation.

So how are you going to do it? Well, actually the quickest way would be -- that's

such an easy constraint that I could say hey, w2 is w1 minus f. So I could just, if I

wanted to really like shortcut this whole lecture, I could say well, w2 is w1 minus f.

Now I've accounted for the constraint. I've removed w2 from the problem. I have a

minimization, an ordinary minimization with an unknown w1. I take the derivative. I

solve derivative equals zero. I find w1, then I go back, I get that w2. That's the fast

way. Of course, gets the right answer. But there's another way that in the end turns

out to be better. It's not necessarily better for this simple problem, but it's better for

the general approach to constrained optimization. So I'm going to not do the simple

deal of solving for w2, but I'm going to keep the constraint around. It's the idea of

Lagrange multipliers. You've heard those words and probably seen it happen.

So what is Lagrange multiplier? What is Lagrange's idea? Lagrange's idea is he

constructed a function of w, which is this to work with, which is the same energy. But

he's going to include a multiplier. Now the next question is what letter shall I use for

that multiplier, Lagrange's multiplier. Books on optimization often call it Lambda --

Lambda's sort of like for Lagrange. So, Lagrange obviously wasn't Greek, but

anyway -- close. Lambda for us always means eigenvalue -- For me always means

eigenvalue. So I'm reluctant to use Lambda. Sometimes in books on economics,

which is we're doing this all the time, the multiplier's called pi because it turns out to

be a price. But let me use u for the Lagrange multiplier. So that'll be the Lagrange

multiplier.

So what do I do with it? I multiply this equation by u and I build it in to this. So this
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thing is this part -- I'll just copy that down there -- plus or minus, depending what I

want, depending which sign I want to end up with, u the multiplier times the

constraint -- w1 minus w2 -- let me put it like that. So the constraint is that this

should be zero. So you can say I haven't added anything. I've added zero. But that

will only be true at the end when I have a specific w1 and w2. Right now what I've

done is I've built in the constraint into the function. Lagrange's brilliant idea was that

now I've got a function that I can -- my derivatives I can take. I could set the

derivatives to zero. dldw1 is going to be zero. dldw2 is going to be zero. And dldu is

going to be zero. So we got now three equations, three unknown. Instead of going

from two to one, we've gone from two up to three. But it's so much more systematic

that it's the right thing to do.

What is this last equation? What's the u derivative of an expression? Well, u doesn't

appear here, the derivative is just w1 -- this just leads us to w1 minus w2 minus f,

which is the constraint that we wanted. So the constraint is showing up as this

equation. Just the way the constraint showed up as this equation here. I guess what

I want to say is when I wrote this down, when we did this first example, I didn't say

here's the constraint. I mean that equation kind of came out from the normal

equations here. So what we're doing new here is the constraint equation is sort of

part of the mechanics and we're asking the question how do I deal with it. Here it

came out of the geometry, so it wasn't there at the beginning so we didn't have to

say how do we deal with this equation. It just emerged. Here it's really forced on us

right away.

So anyway, we've still got to figure out the derivatives of those, and I guess I do

have to finally now say what choice -- yeah. So this is -- what is this, the derivative

of e1 minus u. If I take the w1 derivative, I've got the derivative of v1 with respect to

w1. Then w1 doesn't appear there but it appears here, so it's minus u. This would

be the derivative of v2 with respect to w2, that second spring minus -- oh maybe

plus cu.

Well, those are the three equations. Let me move now to the linear case, just so we

see the beautiful pattern. So if I make the equations linear, what's the energy in
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Hooke's law spring here if the extension is e1 and if it produces a force of w1, I want

to know what is this e1 here. So let me just remember Hooke's law. I think Hooke's

law would say that -- well, there's some elastic constant c1, so there's a c1 and a c2

that tell us how hard or soft the springs are. So these are physical constants. If I

remember right, the energy -- so I'm going to erase a little here just to -- well no. So

what is the energy in that first spring? You remember, there's a 1/2 of an c1 e1

squared. That's the energy in a spring with constant c1 and the stretch e1.

But now I really want it not in terms of e1, I want it in terms of w1, just the way I did

here. I've got to do the same thing here. I want to get to w, because the constraint is

in terms of w. What does Hooke's law say? Hooke's law says w equals ce, that's

Hooke, Hooke's law. The fourth is the elastic constant times the stretch. So in place

of the e I have w over c. So this is 1/2, e1 squared will be w1 squared over c1

squared, and then a c1 cancels -- that's what it looks like. I guess I'm certainly

happy to see that I'm coming up with c inverse. This c is showing up in the

denominator, and that's exactly the -- so this is what I mean, this is what I want for

my energy is a 1/2, w1 squared over c1, and a 1/2, w2 squared over c2, and now I

was doing a minus sign because that kind of goes well with mechanics where a plus

sign would go well with all the other applications.

So now I've got explicit energy. So now I can say what this thing really -- the

derivative with respect to w1. OK. The derivative with respect to w1 is just w1 over

c1. Is that what I'm getting? This is zero. This says w2 over c2 minus u is zero, and

this one says w1 minus w2 equals f. Our three equations. Yes, so I will help kill

these equal signs and just look at -- oh, that's a plus. We've got our saddle point

matrix again. That's the nice thing here. This is a problem with a 3 x 3 matrix, with

three unknowns, w1, w2, and u. With right hand side zero zero and f. With what

matrix? That looks like a 1 over c1, zero and a minus 1. This looks like zero, a 1

over c2 and a plus 1. This looks like -- oh, wait a minute. I don't want this. w1 minus

w2 equal f. I can live with 1 and minus 1 there, but it's not really what I wanted. I

wanted the signs to -- you know what I want here. I want the transpose of that to be

here, and zero to be in that block. So that's what my saddle point matrix would look

like.
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Well, let me just say that I could live with either. I was aiming for this one because

it's symmetric. But a lot of people would rather have the opposite signs and have

the 1 minus 1 there. I don't care which sign f has, of course. Some people these

days are liking this form better because then it has a symmetric part and an anti-

symmetric part. I mean the thing is at some point we're going to get problems like

this with thousands of unknowns, and we're going to think how do we solve them

and maybe some iteration. So we might want the matrix to be symmetric but

indefinite, or we might want a positive-definite symmetric part and an anti-symmetric

part.

What we can't have is positive definite-symmetric. That's like asking for what can't

happen here. The combination of the problems is producing a saddle point and we

can play with that sign, but we can't make that zero something -- oh, we could

actually. What I was going to say is we can't make that zero something different, but

you could. That would be a possible way to -- it's another way people thought of of

solving these problems is artificially throw in a big number there, or even a small

number, and push things towards positive. Anyway, my purpose today is essentially

completed, that we're getting out of physical application after I linearized and it

became a linear equation and it had that saddle point form. So, saddle point form

here, saddle point form here, saddle point forms everywhere. I mean we'll have the

saddle point forms for differential equations, as well as for matrix equations.

So those are the examples to sort of hang on to, and it's section 7.1 that has a big

part of it. Ah -- I always have one last thing to say.

What's the meaning of u? So, u was a Lagrange multiplier. Lagrange just like

helped us out by saying OK, there was a constraint by using one of my multipliers.

But the point is that the multiplier always has a real meaning. I mention prices

before. Here, what's the meaning of u? What's the physical meaning of the

Lagrange multiplier. It turns out to be the displacement of the math. It's the dual

variable, so it always has some interpretation. In this case, with mechanics it's the

amount, the mass comes down when the force asks. What's more, it also has a
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derivative interpretation. Turns out -- I'll just put turns out that the Lagrange

multiplier u turns out to be the derivative of the minimum energy in the system with

respect to the source term. It's the sensitivity of the problem somehow. I'll just use

sensitivity.

You often want to know -- it's actually this quantity that we need over there. We

want to know how much does the answer depend on the source, and that's what the

Lagrange multiplier tells us. So, if I computed the solution here, so the notes do this

-- maybe I'll leave it for the notes. The notes solve this little problem. That's easy to

do. They figure out what the energy is in the springs. It depends on the right hand

side, f, which is just a number here. The energy turns out to be quadratic. You can

take its derivative and you find out that it's u. So that Lagrange multiplier, that's

really a key message, is an important quantity in itself. Here it happens to mean

displacement, which is obviously crucial quantity, and in general it tells us the

change in the minimum energy with respect to a change in the input. That

sensitivity's a natural word to use for that.

So that's a final word about -- well, a near to final word about Lagrange multipliers.

So I'll see you Wednesday and by that time I'll know more about the projects and

we'll be moving onward with optimization. Good. Thanks.
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