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7.2 Calculus of Variations 

One theme of this book is the relation of equations to minimum principles. To 
minimize P is to solve P 
 = 0. There may be more to it, but that is the main 

1point. For a quadratic P (u) = 
2 u

TKu − uTf , there is no difficulty in reaching 
P 
 = Ku − f = 0. The matrix K is symmetric positive definite at a minimum. 

In a continuous problem, the “derivative” of P is not so easy to find. The unknown 
u(x) is a function, and P (u) is usually an integral. Its derivative �P/�u is called the 
first variation. The “Euler-Lagrange equation ” �P/�u = 0 has a weak form 
and a strong form. For an elastic bar, P is the integral of 1 c(u 
(x))2 − f(x)u(x).

2 
The equation �P/�u = 0 is linear and the problem will have boundary conditions: 

� 
cu 
v 
 dx = 

� 
v −(cu 
) 
 = f(x).Weak form fv dx for every Strong form 

Our goal in this section is to get beyond this first example of �P/�u. 

The basic idea should be simple and it is: Perturb u(x) by a test function 
v(x). Comparing P (u) with P (u + v), the linear term in the difference yields �P/�u. 
This linear term must be zero for every admissible v (weak form). This program 
carries ordinary calculus into the calculus of variations. We do it in several steps: 

1. One-dimensional problems P (u) = F (u, u 
) dx, not necessarily quadratic 

2. Constraints, not necessarily linear, with their Lagrange multipliers 

3. Two-dimensional problems P (u) = F (u, ux, uy ) dx dy 

4. Time-dependent equations in which u 
 = du/dt. 

At each step the examples will be as familiar (and famous) as possible. In two 
dimensions that means Laplace’s equation, and minimal surfaces in the nonlinear 
case. In time-dependent problems it means Newton’s Laws, and relativity in the 
nonlinear case. In one dimension we rediscover the straight line and the circle. 

This section is also the opening to control theory —the modern form of the 
calculus of variations. Its constraints are differential equations, and Pontryagin’s 
maximum principle yields solutions. That is a whole world of good mathematics. 

Remark To go from the strong form to the weak form, multiply by v and integrate. 
For matrices the strong form is ATCAu = f . The weak form is vTATCAu = vTf for 
all v. 

For functions with Au = u 
, this exactly matches cu 
v 
 dx = fv dx above. 
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One-dimensional Problems 

The basic problem is to minimize P (u) with a boundary condition at each end: 

� 1 

P (u) = F (u, u 
) dx with u(0) = a and u(1) = b . 
0 

The best u defeats every other candidate u+v that satisfies these boundary conditions. 
Then (u + v)(0) = a and (u + v)(1) = b require that v(0) = v(1) = 0. When v and 
v 
 are small the correction terms come from �F/�u and �F/�u 
. They don’t involve 
v2: 

�F �F 
Inside the integral F (u + v, u 
 + v 
) = F (u, u 
) + v + v 
 + 

�u �u 
 
· · · 

� 1 �F �F 
After integrating P (u + v) = P (u) + v + v 
 dx + 

�u �u 
 
· · · 

0 

That integrated term is the “first variation”. We have already reached �P/�u: 

�P 
� 1 �F �F 

Weak form = v + v 
 dx = 0 for every v . (1)
�u 0 �u �u 
 

This is the equation for u. The derivative of P in each direction v must be zero. 
Otherwise we can make �P/�u negative, which would mean P (u + v) < P (u): bad. 

The strong form looks for a single derivative which—if it is zero—makes all these 
directional derivatives zero. It comes from integrating �P/�u by parts: 

� 1 � � �� � �1
�F d �F �F 

Weak form / by parts v 
�u 

− v 
dx �u 
 

dx + v = 0 . 
�u 
0 0 

The boundary term vanishes because v(0) = v(1) = 0. To guarantee zero for every 
v(x) in the integral, the function multiplying v must be zero (strong form): 

u − 
d 
dx 

� 


 

� 

. (2)Euler-Lagrange equation for 
�F 
�u 

�F 
�u 

= 0 

Example Find the shortest path u(x) between two points (0, a) and (1, b). 

By Pythagoras, (dx)2 + (du)2 is a short step on the path. So P (u 
) = 1 + (u 
)2 dx 
is the length of the path between the points. This square root F (u 
) depends only on u 
 

and �F/�u = 0. The derivative �F/�u 
 brings the square root into the denominator: 

�F 
� 1 u 


Weak form = v 
 � dx = 0 for every v with v(0) = v(1) = 0 . (3)
�u 0 1 + (u 
)2 

If the quantity multiplying v 
 is a constant, then (3) is satisfied. The integral is 
certain to be zero because v(0) = v(1) = 0. The strong form forces �F/�u 
 to be 
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constant: the Euler-Lagrange equation (2) is 

d �F d u 
 u 
 
= � = c . (4)− 

dx �u 
 
− 

dx 1 + (u 
)2 
= 0 or � 

1 + (u 
)2 

That integration is always possible when F depends only on u � (�F/�u = 
0). It leaves the equation �F/�u 
 = c. Squaring both sides, u is seen to be linear : 

c2(u 
)2 = c (1 + (u 
)2) and u 
 = �
1 

c 

− c
and u = �

1 − c
x + d . (5)

2 2 

The constants c and d are chosen to match u(0) = a and u(1) = b. The shortest curve 
connecting two points is a straight line. No surprise! The length P (u) is a minimum, 
not a maximum or a saddle point, because the second derivative F 

 is positive. 

u = optimal arc 
u + v 

perturbed 
b b 

a a 

x 
0 1 0 1 

typical perturbation v(x) area below arc is A 

Figure 7.5: Shortest paths from a to b: straight line and circular arc (constrained). 

v 

u = 
− 

1 
m − 

1 
m 

optimal line 

Constrained Problems 

Suppose we cannot go in a straight line because of a constraint. When the constraint 
is u(x) dx = A, we look for the shortest curve that has area A below it : 

� 1 � 1 

Minimize P (u) = 1 + (u 
)2 dx with u(0) = a, u(1) = b, u(x) dx = A . 
0 0 

The area constraint should be built into P by a Lagrange multiplier—here called m. 
The multiplier is a number and not a function, because there is one overall constraint 
rather than a constraint at every point. The LagrangianL builds in u dx = A: 

Lagrangian L( P 
� 

(F + mu) dx −u, m) = + (multiplier)(constraint) = mA . 

The Euler-Lagrange equation �L/�u = 0 is exactly like �P/�u = 0 in (2): 

�(F + mu) d �(F + mu) d u 
 
= m − 

dx 
� 

1 + (u 
)2 
= 0 . (6)

�u 
− 

dx �u 
 

x 
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Again this equation is favorable enough to be integrated: 

u 
 
mx − � = c which gives u 
 = � 

mx − c
. 

1 + (u 
)2 1 − (mx − c)2 

After one more integration we reach the equation of a circle in the x-u plane: 

u(x) = 
−1

1 − (mx − c)2 + d and (mx − c)2 + (mu − d)2 = 1 . (7) 
m 

The shortest path is a circular arc! It goes high enough to enclose area A. 
The three numbers m, c, d are determined by the conditions u(0) = a, u(1) = b, and 

u dx = A. The arc is drawn in Figure 7.5 (and m is negative). 

We now summarize the one-dimensional case, allowing F to depend also on u 

. 
That introduces v 

 into the weak form and needs two integrations by parts to reach 
the Euler-Lagrange equation. When F involves a varying coefficient c(x), the form 
of the equation does not change, because it is u and not x that is perturbed. 

The first variation of P (u) = 
���

1 
0 F (u, u � , u �� , x) dx is zero at a minimum: 

Weak 
form 

�P 
�u 

= 
� 1 

0 

� 

v 
�F 
�u 

+ v 
 
�F 
�u 
 

+ v 

 
�F 
�u 

 

� 

dx = 0 for all v. 

The Euler-Lagrange equation from integration by parts determines u(x): 

Strong 
form 

�F 
�u 

− 
d 
dx 

� 
�F 
�u 
 

� 

+ 
d2 

dx2 

� 
�F 
�u 

 

� 

= 0 . 

Constraints on u bring Lagrange multipliers and saddle points of L. 

Applications are everywhere, and we mention one (of many) in sports. What 
angle is optimal in shooting a basketball? The force of the shot depends on the 
launch angle—line drives or sky hooks need the most push. The force is minimized 
at 45� if the ball leaves your hand ten feet up; for shorter people the angle is about 
50� . What is interesting is that the same angle solves a second optimization problem: 
to have the largest margin of error and still go through the hoop. 

The condition is P 
 = 0 in basketball (one shot) and �P/�u = 0 in track—where 
the strategy to minimize the time P (u) has been analyzed for every distance. 

Two-dimensional Problems 

In two dimensions the principle is the same. The starting point is a quadratic P (u), 
without constraints, representing the potential energy over a plane region S: 

� � 
 
� �2 � �2 

� 
c �u c �u 

Minimize P (u) = 
2 �x 

+ 
2 �y 

− f(x, y) u(x, y) dx dy . 

S 
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If this energy has its minimum at u(x, y), then P (u + v) → P (u) for every v(x, y). 
We mentally substitute u + v in place of u, and look for the term that is linear in v. 
That term is the first variation �P/�u, which must be zero for every v(x, y): 

= 
� 

S 

� � 

c + c − 

� 

. (8)Weak form 
�P 
�u 

�u 
�x 

�v 
�x 

�u 
�y 

�v 
�y 

fv dx dy = 0 

This is the equation of virtual work. It holds for all admissible functions v(x, y), 
and it is the weak form of Euler-Lagrange. The strong form requires as always an 
integration by parts (Green’s formula), in which the boundary conditions take care of 
the boundary terms. Inside S, that integration moves derivatives away from v(x, y): 

� � � � � � 
� �u � �u 

Integrate by parts − 
�x 

c
�x 

− 
�y 

c
�y 

− f v dx dy = 0 . (9) 

S 

Now the strong form appears. This integral is zero for every v(x, y). By the “funda­
mental lemma” of the calculus of variations, the term in brackets is forced to be zero 
everywhere: 

� �u � �u 
Strong form − 

�x 
c

�x 
− 

�y 
c

�y 
= f(x, y) throughout S . (10) 

This is the Euler-Lagrange equation ATCA = f , or −≥ · c≥u = f . For constant c it 
is Poisson. If the y variable is removed, we are back to a one-dimensional rod. 

With no extra effort we can go backwards to P (u) from any linear equation: 

�2u �2u �2u 
Second-order equation a + 2b + c = 0 . (11)

�x2 �x�y �y2 

When a, b, and c are constant, the corresponding quadratic “energy” is 

�� � �2 � � � � � �2
1 �u �u �u �u 

P (u) = a + 2b + c dx dy . 
2 �x �x �y �y 

If we minimize P we expect to reach (11) as its Euler equation. But there is more 
to it than that. To minimize P it should be positive definite. Inside the integral is 
an ordinary 2 by 2 quadratic au
2 

x + 2buxuy + cu
2 
y.
 The test for positive-definiteness


is still ac > b2, as it was in Chapter 1. (We can make a > 0 in advance.) That test 
decides whether or not equation (11) can be solved with arbitrary boundary values 
on u(x, y). 

In this positive definite case the equation is called “elliptic” and minimization is 
justified. There are three fundamental classes of partial differential equations: 
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auxx buxy + cu is elliptic 
� 
a b 
b c 

� 

: 

E 
P 
H 

2 

ac = b2 

2 

( ) 
( ) 
( ) 

The partial differential equation + 2 yy = 0 or parabolic or 

hyperbolic, according to the matrix 

ac > b elliptic boundary-value problems 
parabolic initial-value problems 

ac < b hyperbolic initial-value problems 

steady state equations
heat/diffusion equations
wave/convection equations

Laplace’s equation uxx + uyy = 0 is elliptic, with a = c = 1 producing the identity 
matrix. The heat equation uxx − ut = 0 is parabolic, with b = c = 0; the matrix is 
singular and its determinant is zero. That parabolic borderline between elliptic and 
hyperbolic needs help from lower-order terms. The wave equation uxx − utt = 0 has 
a = 1 and c = −1. It asks for initial values—two conditions on part of the boundary 
and no conditions on another part, instead of one condition everywhere. 

Here we stay with elliptic equations and minima of P (u). The boundary con­

ditions can specify u, or they can specify the normal component w n.·
Comparing (8) with (9), the boundary term comes from Green’s formula in Sec­
tion : 

u · ≥v dx dy = u))v dx dy + (c≥u n)v ds . (12)c≥ − (≥ · (c≥ ·
S S C 

Both sides equal f v dx dy; that is the weak form. The first term on the right 
yields the strong form − div(c grad u) = f (x, y). A zero integral over the boundary c 
in (12) will be achieved by the boundary conditions. Strictly speaking, the boundary 
conditions on u(x, y) are part of the strong form. 

There are two ways to make this boundary integral of (c≥u n)v safely zero. If·
boundary values u = u0 are given, and u + v shares those values, then v = 0 on the 
boundary. That kills the integral. When u is not given and v is free, we must impose 
the natural boundary condition c≥u n = w n = 0. · ·

A natural condition on w goes with AT . The essential condition u = u0 goes 
with A. 

The Minimal Surface Problem 

Now we are ready for nonlinear partial differential equations. The corresponding 
energy will not be a quadratic P (u). It will be the exact energy E(u), from which 
P originally came as an approximation. If there is a thin membrane covering the set 
S—like a soap bubble—then stretching this membrane requires energy. The energy 
is proportional to the surface area of the soap bubble. In the right units the 
material constant will be c = 1, and the problem is to minimize the surface 
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area E(u): 

��


 
� �2 � �2 

�1/2 
�u �u 

Choose u(x, y) to minimize E(u) = 1 + + dx dy . (13)
�x �y 

S 

When u = 0, the bubble is flat. The expression in brackets reduces to 1. That is 
the minimum if u = 0 is admissible. But suppose the bubble is created on a piece of 
wire that goes around S at a varying height u0(x, y). The bubble has to stick to the 
wire, so the trivial solution u = 0 is not allowed. The bent wire imposes a boundary 
condition u = u0(x, y) at the edge of S, and the minimal surface problem is to 
find the smallest area E(u). Physically, surface tension makes the area a minimum. 

The test for a minimum is still E(u) √ E(u + v). To compute the term �E/�u 
that is linear in v, look at the part A from u alone, and the correction B involving v: 

� �2 � �2
�u �u �u �v �u �v 

A = 1 + + and B = 2 + 2 + O(v 2) . 
�x �y �x �x �y �y 

For small v, the square root is 
�

A + B = 
�

A + B/2
�

A + . Integrate both sides: · · ·

1 �u �v �u �v 
E(u + v) = E(u) + + dx dy + . (14)�

A �x �x �y �y 
· · · 

S 

Now �E/�u is exposed. It is the integral in (14) and it is zero. That is the weak form 
of the minimal surface equation. Because of the square root of A, it is not linear in 
u. (It is always linear in v; that is the whole point of the first variation!) Integrating 
by parts to remove the derivatives from v produces the Euler equation in its strong 
form: 

� � � � 
Minimal surface 

equation 
− 

� 
�x 

1 �
A 

�u 
�x 

− 
� 
�y 

1 �
A 

�u 
�y 

= 0 . (15) 

This is not easy to solve, because of the square root in the denominator. For nearly 
flat bubbles, linearization approximates 

�
A by 1. The result is Laplace’s equation. 

Perhaps it is only natural that the most important nonlinear equation in geometry 
should reduce to the most important linear equation, but still it is beautiful. 

Nonlinear Equations 

The shortest distance and minimal surface problems are typical of the general case. 
The variational problem starts with an integral E = F dx dy. Then F depends on 
x and y and u and derivatives like �u/�x: 

F = F (x, y, u, D1u, D2u, . . .) . 

For an elastic bar there was only D1u = �u/�x. For a soap bubble there is also 
D2u = �u/�y. Higher derivatives are allowed, and we can think of u itself as D0u. 
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The comparison of E(u) with the nearby E(u + v) starts from an ordinary expan­
sion like F (u + v) = F (u) + F 
(u)v + O(v2). When F depends on several derivatives 
of u, this expansion has more terms from F (x, y, D0u + D0v, D1u + D1v, . . .): 

� �F 
Inside the integral F (u + v) = F (u) + Div + . (16)

�Diu 
· · · 

We take the derivatives of F with respect to u and ux and any other Diu. 

The weak form involving v deals with those linear terms: (integral= 0 for all v). 
The strong form lifts each derivative Di from v and puts it (as Di 

T) onto the part 
involving u: 

� � � � �� 
�F �F 

Weak to Strong (Div)dx dy −� DT v dx dy 
�Di u i �Diu 

The transpose is DT = −Di for derivatives of odd order (with an odd number of i 

integrations by parts and minus signs). For even derivatives DT = +Di.i 

Buried inside the calculus of variations is the real source of ATCA! The derivatives 
Diu give Au. Their “transposes” DT give AT . In between, C is normally nonlinear.i 

But when F is a pure quadratic 1 c(Du)2, then DT�F/�Du becomes DT(cDu)—which 
2 

is exactly the linear ATCAu the we know so well. 

7G Each problem in the calculus of variations can be stated in three forms: 

Variational form Minimize E(u) = F (x, y, u, D1u, D2u, . . .) dx dy 

� � S 
�E � �F 

Weak form = (Div) dx dy = 0 for all v 
�u �Diu 

S 
� � 

� �F 
Euler-Lagrange strong form DT = 0.i �Diu 

2 2 2Example 1 F = u2 + u + u2 + u + u2 + uyy = (D0u)2 +x y xx xy · · ·+ (D5u)2 

The derivatives of F (a pure quadratic) are 2u, 2ux, 2uy , . . . , 2uyy. They are derivatives 
with respect to u and ux and the other Diu, not with respect to x! 

Weak form 2 [uv + uxvx + uy vy + uxxvxx + uxy vxy + uyy vyy ] dx dy = 0 . 

We integrate every term by parts to give the strong form (times v): 

Strong form 2 [u − uxx − uyy + uxxxx + uxyxy + uyyyy ] = 0 . 

This is linear because F is quadratic; the minus signs come with odd derivatives in F . 
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2 2Example 2 F = (1 + ux)
1/2 or F = (1 + u2 + uy )

1/2 
x 

The derivatives with respect to ux and uy bring the square root into the denominator. 
The shortest path equation and the minimal surface equation are 

d ux � ux � uy 
= 0 . 

2
− 

dx (1 + ux)
1/2 

= 0 and − 
�x F 

− 
�y F 

Every term fits into the pattern of ATCA, and the framework becomes nonlinear: 

�F 
e = Au −� w = C(e) = leads to AT w = ATC(Au) = f . 

nonlinear �e 

Nonlinear C(Au) from Nonquadratic Energies 

That last line was worth a chapter of words. It is the shortest path to nonlinear 
equilibrium equations. In a linear spring, w = ce is proportional to e. The internal 

2strain energy is F = ce de = 1 ce . In a nonlinear spring the constitutive 
2 

law is w = C(e). The relation of force to stretching, or current to voltage, or flow 
to pressure, is no longer a straight line Ce. We need parentheses in C(e)! 

The energy density is still F = C(e) de = force times movement. Minimizing 
the total energy (integrate F to find E) still gives the equilibrium equation: 

The energy P (u) = [F (Au) − f u] dx is minimized when ATC(Au) = f . 

The first variation of E leads to [C(Au)(Av) − f v] dx = 0 for every v (weak form). 
Then ATC(Au) = f is the Euler equation (strong form). 

For the nonlinear equivalent of positive definiteness, the function C(e) should be 
increasing. The line w = ce had a constant slope c > 0. Now that slope C 
 = dC/de 
is changing—but it is still positive. That makes the energy E(u) a convex function. 
The Euler equation is elliptic—we have a minimum. 

An example is the power law w = C(e) = ep−1 with p > 1. The energy density is 
its integral F = ep/p. The stretching is e = Au = du/dx. The equilibrium equation is 
ATC(Au) = (− d/dx)(du/dx)p−1 = f . This is linear for p = 2. Otherwise nonlinear. 

Complementary Energy 

The complementary energy is a function of w instead of e. It starts with the inverse 
constitutive law e = C−1(w)—in our example e = w1/(p−1). The strain e comes from 
the stress w; the arrow in our framework is reversed. Graphically, we are looking at 
Figure 7.6a from the side. The area under that curve is the complementary 
energy density F ≈ (w) = C−1(w) dw. The twin equations come from F and F ≈ : 

�F �F ≈
Constitutive Laws w = C(e) = and e = C−1(w) = . (17)

�e �w 
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The symmetry is perfect and the dual minimum principle applies to Q(w) = F ≈(w) dx: 

The complementary energy Q(w) is a minimum subject to AT w = f (x) . 

A Lagrange multiplier u(x) takes Q to L(w, u) = [F ≈(w) − uATw + uf ] dx, with the 
constraint ATw = f built in. Its derivatives recover the two equations of equilibrium, 
now nonlinear: 

�L/�w = 0 is C−1(w) − Au = 0 

�L/�u = 0 is ATw = f . 

The first equation gives w = C(Au) and then the second is ATC(Au) = f . 

w w 

F (w) 

e 

area F + F ≈ ew 

F ≈(e) 

e = C−1(w) 
w = C(e) 

e 

area F + F ≈ so w ≤= C(e) 
e 

w 

of rectangle is > ew 

Figure 7.6: The graphs of w = C(e) and e = C−1(w), and their areas F ≈ and F . 

Since these nonlinear things are in front of us, why not take the last step? It is 
never seen in advanced calculus, but there is nothing so incredibly difficult. It is the 
direct link between F and F ≈, known as the Legendre-Fenchel transform : 

F ≈(w) = max [ew − F (e)] and F (e) = max [ew − F ≈(w)] . (18)
e w 

For the first maximum, differentiate with respect to e. That brings back w = �F/�e, 
which is the correct C(e). The maximum itself is F ≈ = e�F/�e − F . The figures 
show graphically that the areas satisfy F ≈ = ew − F on the curve and ew − F < F ≈ 

off the curve. So the maximum of ew − F is F ≈ as desired. 

Similarly, the second maximum in (18) leads to e = �F ≈/�w. That is the con­
stitutive law in the other direction, e = C−1(w). The whole nonlinear theory is 
there, provided the material laws are conservative—the energy in the system should 
be constant. This conservation law seems to be destroyed by dissipation, or more 
spectacularly by fission, but in some ultimate picture of the universe it must remain 
true. 

mu
F will be the Lagrangian and F ≈ is the Hamiltonian. The equations 
tt + cut + ku = 0 and uxx = ut include friction and damping and diffusion, but 

we hesitate to stretch our framework that far. Feynman’s wonderful lectures made 
“least action” the starting point for physics, and the next paragraphs. 
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The Legendre transform reappears at full strength in constrained optimization. 
There F and F ≈ are more general convex functions (with nonnegative second deriva­
tives) and we recognize that F �� is F . Here we compute F ≈(w) for the power law 
and verify that it agrees with the integral of C −1(w). 

Example Find F ≈(w) for the power law F (e) = ep/p (e > 0 and w > 0 and p > 1) 

Differentiating ew − F (e) gives w − ep−1 = 0. Then the conjugate F ≈(w) in (18) is 
wq/q: 

1 1 1p/(p−1) p/(p−1)epF ≈ = ew − = w 1/(p−1)w − w = 
p − 1 

w = wq . 
p p p q 

F ≈(w) = wq /q is also a power law, with dual exponent q = p/(p − 1). This matches 
the area under C−1(w) = w1/(p−1), because integration will increase that exponent to 
1 + 1/(p − 1) = q. The symmetric relation between the powers is p−1 + q−1 = 1. 

Dynamics and Least Action 

Fortunately or unfortunately, the world is not in equilibrium. The energy stored in 
springs and beams and nuclei and people is waiting to be released. When the external 
forces change, the equilibrium is destroyed. Potential energy is converted to kinetic 
energy, the system becomes dynamic, and it may or may not find a new steady state. 

When the system is conservative, the transients will not grow or decay. The 
energy changes from potential to kinetic to potential to kinetic, but the total energy 
K + P remains constant. It is like the earth around the sun or a child on a frictionless 
swing. The force dP/du is no longer zero, and the system oscillates. The problems 
are dynamic instead of static. 

To describe the motion we need an equation or a variational principle. Numerically 
we mostly work with equations (Newton’s laws and conservation laws). This section 
derives those laws from the principle of least action : 

The actual path u(t) minimizes the action integral A(u) between the initial state 
u(t0) and the final state u(t1): 

� t1 

A(u) = (kinetic energy − potential energy) dt . 
t0 

It is better to claim only that �A/�u = 0—the path is always a stationary point but 
not in every circumstance a minimum. We have a difference of energies, and positive 
definiteness can be lost (a saddle point). Laplace’s equation will be overtaken by the 
wave equation. First come three examples to show how the global law of least action 
(the variational principle of least action) produces Newton’s local law F = ma. 

Example 3 A ball of mass m is attracted by the Earth’s gravity 
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The only degree of freedom is the ball’s height u(t). The energies are K and P : 

� �2
1 du 

K = kinetic energy = m and P = potential energy = mgu . 
2 dt 

The action is A = ( 1 m(u 
)2 − mgu) dt. Then �A/�u follows from the rules of this
2 

section—with the time variable t replacing the space variable x. The true path u is 
compared to its neighbors u + v. The linear part of A(u + v) − A(u) gives the first 
variation �A/�u = 0: 

�A t1 

= (mu 
v 
 − mgv) dt = 0 for every v . 
�u t0 

That is the weak form of Newton’s law. You recognize the momentum mu 
 as the 
1 m(u 
)2derivative of with respect to the velocity u 
. The strong form is the Euler
2 

equation: 

d du 
Newton’s law m − mg = 0 which is ma = F . (19)− 

dt dt 

The action integral is minimized by the path that follows Newton’s law. 

The 3-step framework of applied mathematics is not changed. The place of A is 
taken by d/dt and AT is −d/dt. The material constant is m and the external force is 
f = mg. The balance between ATCAu and f is Newton’s law—a balance of inertial 
forces instead of mechanical forces. Figure 7.7 identifies the variables as the velocity and 
momentum. 

position u 

velocity v momentum p 
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l − l cos � 


 

du dp 
. 
. . . . .v = f = .
... . . . . . . 

. . . . 
. . . . 
. . . . .dt dt . . . . 
. . . . . . 

. 
. . . . . ... . . . . . . . . . . . . 

. . ... . ... . . . . . . . . . . . 
. ... . . ... . . . . . . ..... . 

. ..

p = mv 

Figure 7.7: Newton’s law for a ball. A pendulum also fits the framework. 

Example 4 A simple pendulum with mass m and length l 

The state variable u is the angle � from the vertical. The height l − l cos � still enters the 
potential energy and the velocity is v = l d�/dt: 

� �2
1 d� 

K = kinetic energy = ml2 and P = potential energy = mg(l − l cos �)
2 dt 
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In this problem the equation will no longer be linear. K is quadratic but P involves cos �. 
The Euler equation follows the rule for an integral F (�, � 
) dt, with F = K − P : 

Euler �F d �F	 d d� 
equation �� 

− 
dt �� 
 

= 0 or − mgl sin � − ml2 = 0 . 
dt dt 

This is the equation of a simple pendulum. The mass cancels out; clocks keep time! 

d2� g
Pendulum equation + sin � = 0 .	 (20)

dt2 l 

When the angle is small and sin � is approximated by �, the equation becomes linear. The 
period changes a little. A linear clock keeps time, but not the right time. 

Example 5 A vertical line of springs and masses has Mu 

 + Ku = 0 
1The potential energy in the springs is P = 
2 u

TATCAu. The kinetic energy has 1 mi(dui/dt)2 
2 

from each mass. Then K − P goes into the action integral, and there is an Euler equa­
tion �A/�ui = 0 for each mass. In matrix form this is the basic equation of mechanical 
engineering: 

Undamped oscillation	 Mu 

 + ATCAu = 0 . 

M is the diagonal mass matrix and ATCA is the positive definite stiffness matrix. The 
system oscillates around equilibrium and the total energy K + P is constant. 

Example 6 Waves in an elastic bar—a continuum of masses and springs. 

The action integral in this continuous case has an integral instead of a sum: 

� t1 
� 1 � �2 � �2

1 du 1 du 
Action A(u) = 

2 
m 

dt 
− 

2 
c 

dx 
dx dt . 

t0 x=0 

The Euler-Lagrange rules for �A/�u = 0 cover this case of a double integral: 

�A � �u � �u 
Wave equation 

�u 
= − 

�t 
m

�t 
− 

�x �x 
= 0 .−c 

That is the wave equation mutt = cuxx. With constant density m and elastic constant 
c, the wave speed is c/m—faster when the bar is stiffer and lighter. 

Staying with the calculus of variations, there are two important comments: 

1.	 When u is independent of time (no motion), the kinetic energy is K = 0 and 
the least action principle reduces to �P/�u = 0. The dynamic problem goes 
back to the static problem of ATCAu = f , without a time derivative. 
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2.	 The dual variable w, from all the evidence, should be found in its usual place 
in Figure 7.7. It is the momentum p = mv = m du/dt. We can rewrite K: 

1 2 1	 2The kinetic energy K = mv becomes p . 
2	 2m 

That is the “complementary” kinetic energy, expressed in terms of p instead of v. 
Note that m moves to the denominator, just as c did in the elastic energy w2/2c. 
Hamilton found the right total energy, using the momentum p and the displacement 
u. Those variables (not the velocity!) are at the primal and dual corners of our 
framework: 

1 
Hamiltonian H = K + P = p 2 + mgu .	 (21)

2m 

The Hamiltonian H(p, u) takes us directly to the equations of motion: 

= 
du 
dt 

and = − 
dp 
dt 

. (22) 

: 

dH 
dt 

= 
dp 
dt 

+ 
dH 
du 

du 
dt 

= u 
p 
 − p 
u 
 . (23) 

Hamilton’s equations 
�H 
�p 

�H 
�u 

The derivative dH/dt is zero so the total energy is constant 

Chain rule 
�H 
�p 

= 0 

This is the essence of classical mechanics. It is tied to Hamilton and not to Newton. 
For that reason it survived the revolution brought by Einstein. We will see that H 
has a relativistic form and even a quantum mechanical form. Comparing a falling 
ball with an oscillating spring, the key difference in H is between u and u2: 

1	 1 
(ball) H = p 2 + mgu (spring) H = p 2 +

1 2 cu 
2m	 2m 2 

Hamilton’s equations �H/�p = u 
 and �H/�u = −p 
 yield Newton’s Laws: 

p
(ball) = u 
 and mg = −p 
, or mu 

 = −mg 

m

p


(spring) = u 
 and cu = −p 
, or mu 

 + cu = 0 . 
m 

The mass passes through equilibrium at top speed (all energy in K). The force 
reverses to slow it down and stop it (all energy in P ). In the u − p plane (the phase 
plane) the motion stays on the energy surface H = constant, which is the ellipse in 
Fig. 7.8. Each oscillation of the spring is a trip around the ellipse. 

With more springs there are 2n axes u1, . . . , un, p1, . . . , pn and the ellipse becomes 
an ellipsoid. Hamilton’s equations are �H/�pi = dui/dt and �H/�ui = −dpi/dt. 
They lead again to M u 

 + Ku = 0, and to the wave equation in the continuous case. 
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1 2 3 4 

1 

2 

3 

4 

momentum p(t) 

height 
u(t) 

Phase plane 

................................................................................................ ......................................

............................
...

................................................................................................ ............................
......................................................................................................................

......
................................
...................................................................................................................

................................................................................................ ......................................

............................
...

................................................................................................ ............................

X 

..................................................................................................... ......................................

............................
...

................................................................................................. ............................ ..................................................................................................... .......................

................................

.................................................................................................................. ..................................................................................................... .......................

X 

................................

..............................................................................................................
................................................................................................. ......................................
............................
...

................................................................................................. ........................... all P 

................................................................................................. ........................... ................................. 
 ................................

.................................................................................

X 

all K 
X 

� 
all K 

Figure 7.8: 1 tension 2 motion 3 compression 4 motion: Constant energy H = K +P . 

Relativity and Quantum Mechanics 

These few paragraphs are an attempt, by a total amateur, to correct the action inte­
gral by the rules of relativity. Feynman’s lectures propose the term −mc2 1 − (v/c)2 

in the Lagrangian K −P . At v = 0 we see Einstein’s formula e = mc2 for the energy 
in a mass m at rest. It becomes part of the potential energy P . 

As the velocity increases from zero there is also a part corresponding to K. For 
small x the square root of 1 −x is approximately 1 − 1 x, which linearizes the problem

2 
1and brings back Newton’s 
2 mv2—just as linearizing the minimal surface equation 

brought back Laplace. Relativity mixes together K and P ! 

� 1 v2 
2Lagrangian F (v) = −mc 2 1 − (v/c)2 mc 1 − .� −

2 c2 

Now, trusting in duality, we look for the conjugate function F ≈ in the Hamiltonian. 
It will be a function of p, not v. The first step is to find that momentum p. Before 

1relativity, F was 
2 mv2 and its derivative was p = mv. Always p is �F/�v: 

�F mv 
Momentum p = = � . (24)

�v 1 − (v/c)2 

This becomes infinite as v approaches the speed of light. According to (18), F ≈ is 

2Hamiltonian F ≈(p) = max [pv − F (v)] = mc 1 + (p/mc)2 . (25)
v 

This maximum occurs at (24)—which we solved for v and substituted into pv −F (v). 
2The new Hamiltonian F ≈ is again Einstein’s energy e = mc when the system is 

at rest. As p increases from zero, the next contribution is Newton’s p2/2m: 
2 

2 p
F ≈ � mc 1 + 

1 p2 

= rest energy + . 
2 m2c2 2m 
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Newton found the low-order term in the energy F ≈ that Einstein computed exactly! 
Perhaps the universe is like a minimal surface in space-time. To Laplace and Newton 
it looked flat (linearized), but to Einstein it became curved. 

It is risky to add anything about quantum mechanics, which works with proba­
bilities. It is a mixture of differential equations (Schrödinger) and matrix equations 
(Heisenberg). The event at which �A/�u = 0 almost always occurs. Feynman gave 
each possible trajectory of the system a phase factor eiA/h multiplying its probability 
amplitude. The small number h (Planck’s constant) means that a slight change in the 
action A completely alters the phase. There are strong canceling effects from nearby 
paths unless the phase is stationary. In other words �A/�u = 0 at the most probable 
path. 

This prediction of “stationary phase” applies equally to light rays and particles. 
Optics follows the same principles as mechanics, and light travels by the fastest route: 
least action becomes least time. If Planck’s constant could go to zero, the 
deterministic principles of least action and least time would appear and the path 
of least action would be not only probable but certain. 

Problem Set 7.2 

1	 What are the weak form and the strong form of the linear beam equation—the 
Euler equation for P = [ 1 − f u] dx?

2 c(u 

)2 

2	 Minimizing P = (u 
)2dx with u(0) = a and u(1) = b also leads to the straight 
line through these points. Write down the weak form and the strong form. 

3	 Find the Euler equations (strong form) for 

u	 2(a) [(u 
)2 + e ] dx (b) uu 
 dx (c) x (u 
)2dx 

4	 If F (u, u 
) is independent of x, as in almost all our examples, show from the 
Euler equation and the chain rule that H = u 
�F/�u 
 − F is constant. This is 
dual to the fact that �F/�u 
 is constant when F is independent of u. 

5	 If the speed is x the travel time of a light ray is 
�	 1 1 

T = 1 + (u 
)2 dx with u(0) = 0 and u(1) = 1 . 
0	 x 

(a) From equation �T /�u = 0 what quantity is constant (Snell’s law)? 

(b) Can you integrate once more to find the optimal path u(x)? 

6	 With the constraints u(0) = u(1) = 0 and u dx = A, show that the minimum 
value of P = (u 
)2dx is 12A2 . Introduce a multiplier m, solve the Euler 
equation for u, and verify that A = −m/24. Then the derivative dP/dA = 24A 
equals the multiplier −m as the sensitivity theory predicts. 
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7	 For the shortest path constrained by u dx = A, what is unusual about the 
solution in Fig. 7.5 as A becomes large? 

8 Suppose the constraint is u dx A, with inequality allowed. Why does the →
solution remain a straight line as A becomes small? Where does the multiplier 
m remain? This is typical of inequality constraints: either the Euler equation 
is satisfied or the multiplier is zero. 

9 Suppose the constrained problem is reversed, and we maximize the area P = 
u dx subject to fixed length I = 1 + (u 
)2 dx, with u(0) = a and u(1) = b. 

(a) Form the Lagrangian and solve its Euler equation for u. 

(b) How is the multiplier M related to m in the text? 

(c) When do the constraints eliminate all functions u? 

10	 Find by calculus the shortest broken-line path between (0, 1) and (1, 1) that 
goes first to the horizontal axis y = 0 and bounces back. Show that the best 
path treats this axis like a mirror: angle of incidence = angle of reflection. 

11	 The principle of maximum entropy selects the probability distribution that max­
imizes H = u log u dx. Introduce Lagrange multipliers for the constraints −

u dx = 1 and xu dx = 1/a, and find by differentiation an equation for u. 
−axOn the interval 0 < x < ∗ show that the most likely distribution is u = ae . 

12	 If the second moment x2u dx is also known show that Gauss wins again: the 
maximizing u is the exponential of a quadratic. If only u dx = 1 is known, 
the most likely distribution is u = constant. The least information comes when 
only one outcome is possible, say u(6) = 1, since u log u is then identically zero. 

13	 A helix climbs around a cylinder with x = cos �, y = sin �, z = u(�): 

its length is L = dx2 + dy2 + dz2 = 1 + (u 
)2 d� . 

Show that u 
 = constant satisfies Euler’s equation. The helix is regular. 

14 Multiply the nonlinear equation −u 

 + sin u = 0 by v and integrate the first 
term by parts to find the weak form. What integral P is minimized by u? 

15	 Find the Euler equations (strong form) for 

1 �2u 
�2 

�2u 
�2 

�2u 
�2 

(a)	 P (u) = + 2 + dx dy 
2 �x2 �x�y �y2 

1 2(b)	 P (u) = (yu 2 + uy ) dx dy (c) E(u) = u 1 + (u 
)2 dx 
2 x 

1 2 2(d)	 P (u) = (u 2 + uy ) dx dy with u dx dy = 1. 
2 x 
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16	 Show that the Euler equations for these integrals are the same: 

�2 u �2u	 �2 u 
�2 

�y2 
dx dy and	 dx dy 

�x2	 �x�y 

Presumably the two integrals are equal if the boundary conditions are zero. 

17	 Sketch the graph of p2/2m + mgu = constant in the u − p plane. Is it an ellipse, 
parabola, or hyperbola? Mark the point where the ball reaches maximum height 
and begins to fall. 

18	 Draw a second spring and mass hanging from the first. If the masses are m1, m2 

and the spring constants are c1, c2, the energy is 

1	 2 1 2 11	 2H = K + P = p1 + p2 + c1u1 + c2(u2 − u1)
2 . 

2m1 2m2 2 2 

Find the four Hamilton’s equations �H/�pi = dui/dt, �H/�ui = −dpi/dt, and 
the matrix equation Mu 

 + Ku = 0. 

19	 The Hamiltonian for a pendulum (with u = �) is H = p2/2m + mgl(1 − cos u). 
Write out Hamilton’s equations (22) and eliminate p to find the equation of a 
pendulum. 

1	 120	 Verify that the energy 
2 e

TCe and the complementary energy wTC−1w are
2 

T 1conjugate. As in equation (18), this means that 1 wTC−1w = max[e w− 
2 e

TCe].
2 


