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6.4 Krylov Subspaces and Conjugate Gradients 

Our original equation is Ax = b. The preconditioned equation is P −1Ax = P −1b. 
When we write P −1, we never intend that an inverse will be explicitly computed. P 
may come from Incomplete LU , or a few steps of a multigrid iteration, or “domain 
decomposition.” Entirely new preconditioners are waiting to be invented. 

The residual is rk = b − Axk. This is the error in Ax = b, not the error in x 
itself. An ordinary preconditioned iteration corrects xk by the vector P −1rk : 

P xk+1 = (P − A)xk + b or P xk+1 = P xk + rk or xk+1 = xk + P −1 rk . (1) 

In describing Krylov subspaces, I should work with P −1A. For simplicity I will 
only write A ! I am assuming that P has been chosen and used, and the precondi­
tioned equation P −1Ax = P −1b is given the notation Ax = b. The preconditioner is 
now P = I. Our new A is probably better than the original matrix with that name. 

With x1 = b, look first at two steps of the pure iteration xj+1 = (I − A)xj + b: 

x2 = (I − A)b + b = 2b − Ab x3 = (I − A)x1 + b = 3b − 3Ab + A2b. (2) 

My point is simple but important: xj is a combination of b, Ab, . . . , Aj−1b. 
We can compute those vectors quickly, multiplying each time by a sparse A. Ev­
ery iteration involves only one matrix-vector multiplication. Krylov gave a name 
to all combinations of those vectors, and he suggested that there might be better 
combinations than the particular choices xj in (2). 

Usually a different combination will come closer to the desired x = A−1b. 

Krylov subspaces 

The linear combinations of b, Ab, . . . , Aj−1b form the jth Krylov subspace. This space 
depends on A and b. Following convention, I will write Kj for that subspace and Kj 

for the matrix with those basis vectors in its columns: 

Krylov matrix Kj = [ b Ab A2b . . . Aj−1b ] . 
(3) 

Krylov subspace Kj = all combinations of b, Ab, . . . , Aj−1b. 

Thus Kj is the column space of Kj . We want to choose the best combination as 
our improved xj . Various definitions of “best” will give various xj . Here are four 
different approaches to choosing a good xj in Kj —this is the important decision: 

1. The residual rj = b − Axj is orthogonal to Kj (Conjugate Gradients). 

2. The residual rj has minimum norm for xj in Kj (GMRES and MINRES). 

3. rj is orthogonal to a different space Kj (A
T) (BiConjugate Gradients). 
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4. The error ej has minimum norm (SYMMLQ). 

In every case we hope to compute the new xj quickly from the earlier x’s. If that 
step only involves xj−1 and xj−2 (short recurrence) it is especially fast. Short 
recurrences happen for conjugate gradients and symmetric positive definite A. The 
BiCG method is a natural extension of short recurrences to unsymmetric A (using 
two Krylov spaces). A stabilized version called BiCGStab chooses xj in AT

Kj (A
T). 

As always, computing xj can be very unstable until we choose a decent basis. 

Vandermonde Example 

To follow each step of orthogonalizing the basis, and solving Ax = b by conjugate 
gradients, we need a good example. It has to stay simple ! I am happy with this one: 

� 
1 

⎡ � 
1
⎡ � 

1
⎡ � 

1/1
⎡ 

A = 
��� 

2 
3 

⎢⎢⎣ b = 
��� 

1 
1 

⎢⎢⎣ Ab = 
��� 

2 
3 

⎢⎢⎣ A−1b = 
��� 

1/2 
1/3 

⎢⎢⎣ . (4) 

4 1 4 1/4 

That constant vector b spans the Krylov subspace K1. Then Ab, A2b, and A3b are 
the other basis vectors in K4. They are the columns of K4, which we will name V : 

� 
1 1 1 1

⎡ 

1 2 4 8 
Vandermonde matrix K4 = V = 

� ⎢
. (5)�

1 3 9 27
⎢� ⎣ 

1 4 16 64 

Those columns are constant, linear, quadratic, and cubic. The column vectors are 
independent but not at all orthogonal. The best measure of non-orthogonality starts 
by computing inner products of the columns in the matrix V TV . When columns are 
orthonormal, their inner products are 0 or 1. (The matrix is called Q, and the inner 
products give QTQ = I.) Here V TV is far from the identity matrix ! 

� 
4 10 30 100 

⎡ 
10 = 1 + 2 + 3 + 4 

10 30 100 354 ⎢ 30 = 12 + 22 + 32 + 42 

V TV = 
��

30 100 354 1300
⎢

100 = 13 + 23 + 33 + 43� ⎣ 

100 354 1300 4890 1300 = 15 + 25 + 35 + 45 

The eigenvalues of this inner product matrix (Gram matrix ) tell us something im­
portant. The extreme eigenvalues are �max � 5264 and �min � .004. Those are 
the squares of α4 and α1, the largest and smallest singular values of V . The key 
measure is their ratio α4/α1, the condition number of V : 

5264 
� 

�max
cond(V TV ) � cond(V ) = � 1000 . 

.004 
� 106 

�min 

For such a small example, 1000 is a poor condition number. For an orthonormal basis 
with QTQ = I, all eigenvalues = singular values = condition number = 1. 
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We could improve the condition by rescaling the columns of V to unit vectors. 
Then V TV has ones on the diagonal, and the condition number drops to 263. But 
when the matrix size is realistically large, that rescaling will not save us. In fact 
we could extend this Vandermonde model from constant, linear, quadratic, and cubic 

3vectors to the functions 1, x, x2, x . (A multiplies by x.) Please look at what happens ! 

Continuous Vandermonde matrix Vc = [ 1 x x2 x3 ] . (6) 

Again, those four functions are far from orthogonal. The inner products in V TVcc 

change from sums to integrals. Working on the interval from 0 to 1, the integrals are 
i

� 
1 
x xj dx = 1/(i + j − 1). They appear in the Hilbert matrix : 

0 

� 
1 1 

2 
1 
3 

1 
4 

⎡ 

Continuous inner products V T 
c Vc = 

����� 

1 
2 
1 
3 
1 

1 
3 
1 
4 
1 

1 
4 
1 
5 
1 

1 
5 
1 
6 
1 

⎢⎢⎢⎢⎣ 
. (7) 

4 5 6 7 

The extreme eigenvalues of this Hilbert matrix are �max � 1.5 and �min � 10−4 . As 
always, those are the squares of the singular values αmax and αmin of Vc. The condition 
number of the power basis 1, x, x2, x3 is the ratio αmax/αmin � 125. If you want a more 
impressive number (a numerical disaster), go up to x9 . The condition number of the 

910 by 10 Hilbert matrix is �max/�min � 1013, and 1, x, . . . , x is a very poor basis. 

To reduce that unacceptably large number, Legendre orthogonalized the basis. 
He chose the interval from −1 to 1, so that even powers would be automatically 

1

3 , x
3 3orthogonal to odd powers. The first Legendre polynomials are 1, x, x2 x.

5
− −

Our point is that the Vandermonde matrix example (as we follow it below) will be 
completely parallel to the famous functions of Legendre. 

In particular, the three-term recurrence in the Arnoldi-Lanczos orthogonal­
ization is exactly like Legendre’s classical three-term recurrence for his polynomials. 
They appear for the same reason—the symmetry of A. 

Orthogonalizing the Krylov Basis 

The best basis q1, . . . , qj for the Krylov subspace Kj is orthonormal. Each new qj 

comes from orthogonalizing t = Aqj−1 to the basis vectors q1, . . . , qj−1 that are already 
chosen. The iteration to compute these orthonormal q’s is Arnoldi’s method. 

This method is essentially the Gram-Schmidt idea (called modified Gram-Schmidt 
when we subtract the projections of t onto the q’s one at a time, for numerical 
stability). We display one Arnoldi cycle for the Vandermonde example that has 
b = [ 1 1 1 1 ]� and A = diag([ 1 2 3 4 ]): 

Arnoldi’s orthogonalization of b, Ab, . . . , An−1b: 
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0 q1 = b/√b√; % Normalize b to √q1√ = 1 q1 = [ 1 1 1 1 ]�/2

for j = 1, . . . , n − 1 % Start computation of qj+1


1 t = Aqj ; % one matrix multiplication Aq1 = [ 1 2 3 4 ]�/2

for i = 1, . . . , j % t is in the space Kj+1


2 hij = qTt; % hij qi = projection of t on qi h11 = 5/2
i 

3 t = t − hij qi; % Subtract that projection t = [ −3 −1 1 3]�/4 

5 q

4 h

end; % t is orthogonal to q1, . . . , qj 

j+1,j = √t√; % Compute the length of t h21 = 
�

5/2 

j+1 = t/hj+1,j ; % Normalize t to √qj+1√ = 1 q2 = [ −3 −1 1 3]�/
�

20 
end % q1, . . . , qn are orthonormal 

You might like to see the four orthonormal vectors in the Vandermonde example. 
Those columns q1, q2, q3, q4 of Q are still constant, linear, quadratic, and cubic. I 
can also display the matrix H of numbers hij that produced the q’s from the Krylov 
vectors b, Ab, A2b, A3b. (Since Arnoldi stops at j = n − 1, the last column of H is 
not actually computed. It comes from a final command H( : , n) = Q � � A � Q( : , n).) 
This H turns out to be symmetric and tridiagonal, and we will look for a reason. 

Arnoldi’s method for the Vandermonde example V gives Q and H: 

� 
1 −3 1 −1 

⎡ � 
5/2 

�
5/2 

⎡ 

Q = 
�1 −1 −1 3⎢ 5/2 

�
.80 ⎢

� 
⎢ ��

1 1 −1 −3 ⎣ H = 
��

5/2 �
.80 5/2 

�
.45

⎢

1 3 1 1 

� �
.45 5/2 

⎣ 

2 
�

20 2 
�

20 

Please notice that H is not upper triangular. The usual QR factorization of the 
original Krylov matrix K (which was V in our example) has this same Q, but Arnoldi 
does not compute R. Even though the underlying idea copies Gram-Schmidt (at every 
step qj+1 is a unit vector orthogonal to the previous j columns), there is a difference. 
The vector t that Arnoldi orthogonalizes against the previous q1, . . . , qj is t = Aqj . 
This is not column j + 1 of K, as in Gram-Schmidt. Arnoldi is factoring AQ ! 

Arnoldi factorization AQ = QH for the final subspace Kn: 

� ⎡ � ⎡ � 
h11 h12 · h1n 

⎡ 

� q1 qn 

⎢ � h21 h22 · h2n 
⎢

.AQ = � Aq1 Aqn 

⎢
= 

�� · · · ⎢ � · · · ⎢ �
0 h23 · · 

⎢⎣ ⎣ � ⎣ (8) 

0 0 · hnn 

This matrix H is upper triangular plus one lower diagonal, which makes it “upper 
Hessenberg.” The hij in step 2 go down column j as far as the diagonal. Then 
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hj+1,j in step 4 is below the diagonal. We check that the first column of AQ = QH 
(multiplying by columns) is Arnoldi’s first cycle that produces q2: 

Column 1 Aq1 = h11q1 + h21q2 which is q2 = (Aq1 − h11q1)/h21 . (9) 

That subtraction is step 3 in Arnoldi’s algorithm. The division by h21 is step 5. 

Unless more of the hij are zero, the cost is increasing at every iteration. The 
3vector updates in step 3 for j = 1, . . . , n − 1 give nearly n2/2 updates and n /2 flops. 

A short recurrence means that most of these hij are zero, and the count of floating 
point operations drops to O(n2). That happens when A = AT . 

Arnoldi Becomes Lanczos 

q

The matrix H is symmetric and therefore tridiagonal when A is symmetric. 
This fact is the foundation of conjugate gradients. For a matrix proof, multiply 
AQ = QH by QT . The left side QTAQ is always symmetric when A is symmetric. 
Since H has only one lower diagonal, it has only one upper diagonal. This tridiagonal 
H has only three nonzeros in its rows and columns. So computing qj+1 only involves 
j and qj−1: 

Arnoldi when A = AT Aqj = hj+1,j qj+1 + hj,j qj + hj−1,j qj−1 . (10) 

This is the Lanczos iteration. Each new qj+1 = (Aqj − hj,j qj − hj−1,j qj−1)/hj+1,j 

involves one multiplication Aqj , two dot products for h’s, and two vector updates. 

Allow me an important comment on the symmetric eigenvalue problem Ax = �x. 
We have seen that H = QTAQ is tridiagonal, and QT = Q−1 from the orthogonality 
QTQ = I. The matrix H = Q−1AQ has the same eigenvalues as A: 

Same � Hy = Q−1AQy = �y gives Ax = �x with x = Qy . (11) 

It is much easier to find the eigenvalues � for a tridiagonal H than for the original A. 

For a large symmetric matrix, we often stop the Arnoldi-Lanczos iteration at a 
tridiagonal Hk with k < n. The full n-step process to reach Hn is too expensive, 
and often we don’t need all n eigenvalues. So we compute the k eigenvalues of Hk 

instead of the n eigenvalues of H. These computed �1k , . . . , �kk (sometimes called 
Ritz values) can provide good approximations to the first k eigenvalues of A. And 
we have an excellent start on the eigenvalue problem for Hk+1, if we decide to take a 
further step. 

This Lanczos method will find, approximately and iteratively and quickly, the 
leading eigenvalues of a large symmetric matrix. For its inner loop (the eigenvalues 
of the tridiagonal Hk ) we use the “QR method” described in section . 
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The Conjugate Gradient Method 

We return to iterative methods for Ax = b. The Arnoldi algorithm produced or­
thonormal basis vectors q1, q2, . . . for the growing Krylov subspaces K1, K2, . . .. Now 
we select vectors xk in Kk that approach the exact solution to Ax = b. 

We concentrate on the conjugate gradient method when A is symmetric positive 
definite. Symmetry gives a short recurrence. Definiteness prevents division by zero. 

The rule for xk in conjugate gradients is that the residual rk = b − Axk should 
be orthogonal to all vectors in Kk. Since rk will be in Kk+1, it must be a multiple 
of Arnoldi’s next vector qk+1 ! Each residual is therefore orthogonal to all previous 
residuals (which are multiples of the previous q’s): 

Orthogonal residuals ri 
T rk = 0 for i < k . (12) 

The difference between rk and qk+1 is that the q’s are normalized, as in q1 = b/√b√. 
Similarly rk−1 is a multiple of qk . Then the difference rk − rk−1 is orthogonal to 

each subspace Ki with i < k. Certainly xi − xi−1 lies in that Ki. So �r is orthogonal 
to earlier �x’s: 

(xi − xi+1)
T(rk − rk−1) = 0 for i < k . (13) 

These differences �x and �r are directly connected, because the b’s cancel in �r: 

rk − rk−1 = (b − Axk ) − (b − Axk−1) = −A(xk − xk−1) . (14) 

Substituting (14) into (13), the updates �x are “A-orthogonal” or conjugate: 

Conjugate directions (xi − xi−1)
TA(xk − xk−1) = 0 for i < k . (15) 

Now we have all the requirements. Each conjugate gradient step ends with a 
“search direction” dk−1 for the next update xk − xk−1. Steps 1 and 2 compute the 
correct multiple �kdk−1 to move to xk . Using (14), step 3 finds the new rk. Steps 4 
and 5 orthogonalize rk against the search direction just used, to find the next dk . 

The constants �k in the search direction and �k in the update come from (12) 
and (13) for i = k−1. For symmetric A, orthogonality will be automatic for i < k−1, 
as in Arnoldi. We have a “short recurrence” for the new xk and rk . 

Here is one cycle of the algorithm, starting from x0 = 0 and r0 = b and d0 = r0. 
Steps 1 and 3 involve the same matrix-vector multiplication Ad. 

Conjugate Gradient Method for Symmetric Positive Definite A 

Example: A = diag([ 1 2 3 4 ]) and b = [ 1 1 1 1 ]� 

1 �k = rT 
k−1

rk−1/d
T 
k−1

Adk−1 % Step length to next xk �1 = 4/10 = 2/5 
2 xk = xk−1 + �k dk−1 % Approximate solution x1 = [ 2 2 2 2 ]�/5 
3 
4 

rk = rk−1 − �kAdk−1 

�k = rT 
k rk /r

T 
k−1

rk−1 

% New residual from (14) 
% Improvement this step 

r1 = [ 3 1 
�1 = 1/5 

−1 −3 ]�/5 

5 dk = rk + �k dk−1 % Next search direction d1 = [ 4 2 0 −2 ]�/5 
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The formulas for �k and �k are explained briefly below—and fully by Trefethen-Bau [–] 
and Shewchuk [–] and many other good references. 

When there is a preconditioner P (to use even fewer CG steps for an accurate x), 
step 3 uses P −1A and the inner products in steps 1 and 4 include an extra factor P −1 . 

Different Viewpoints on Conjugate Gradients 

I want to describe the (same!) conjugate gradient method in two different ways: 

1. It solves a tridiagonal system Hy = f recursively, for Arnoldi’s H. 

12. It minimizes the energy 
2 x

TAx − xTb recursively. This is important. 

How does Ax = b change to the tridiagonal Hy = f ? Those are connected by 
Arnoldi’s orthonormal columns q1, . . . , qn in Q, with QT = Q−1 and QTAQ = H: 

Ax = b is (QTAQ)(QT x) = QTb which is Hy = f = (√b√, 0, . . . , 0) . (16) 

TSince q1 is b/√b√, the first component of f = QTb is q1 b = √b√. The other components 
of f are qTb = 0 because qi is orthogonal to q1. The conjugate gradient method is i 

implicitly computing the symmetric tridiagonal H. When the method finds xk , it 
also finds yk = QT 

k xk (but it doesn’t say so). Here is the third step: 
� 

h11 h12 

⎡ � ⎡ � 
√b√

⎡ 

Tridiagonal system Hy= f 

h
Implicitly solved by CG 

H3y3 = � h21 h22 h23 ⎣ �y3 ⎣ = � 0 ⎣ . (17) 
32 h33 0 

This is the equation Ax = b projected by Q3 onto the third Krylov subspace K3. 

These h’s never appear in conjugate gradients. We don’t want to do Arnoldi too! 
It is the LDLT factors of H that CG is somehow computing—two new numbers � 
and � at each step. Those give a fast update from yk−1 to yk. The iterates xk = Qk yk 

from conjugate gradients approach the exact solution xn = Qnyn which is x = A−1b. 

Energy By seeing conjugate gradients as an energy minimizing algorithm, we can 

xTAx − xTb. Minimizing E(x) is the same as solving 
Ax = b, when A is positive definite—this was the main point of Section 1.6. The 
CG iteration minimizes E(x) on the growing Krylov subspaces. 

Ax = b E(x 1 
2 

extend it to nonlinear problems and use it in optimization. For our linear equation 
, the energy is ) = 

The first subspace K1 is the line in the direction d0 = r0 = b. Minimization of 
the energy E(x) for the vectors x = �b produces the number �1: 

1 bTb 
E(�b) = �2bTAb − �bTb is minimized at �1 = . (18)

2 bTAb 

This �1 is the constant chosen in step 1 of the first conjugate gradient cycle. 
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1The gradient of E(x) = 
2 x

TAx − xTb is exactly Ax − b. The steepest descent 
direction at x1 is along the negative gradient, which is r1 ! This sounds like the 
perfect direction d1 for the next move. But the great difficulty with steepest descent 
is that this r1 can be too close to the first direction d0. Little progress that way. So 
step 5 adds the right multiple �1d0, in order that the new d1 = r1 + �1d0 will be 
A-orthogonal to the first direction d0. 

Then we move in this conjugate direction d1 to x2 = x1 + �2d1. This explains 
the name conjugate gradients. The pure gradients of steepest descent would be too 
nearly parallel, and we would take small steps across a valley instead of a good step 
to the bottom (the minimizing x in Figure 6.15). Every cycle of CG chooses �k to 
minimize E(x) in the new search direction x = xk−1 + �dk−1. The last cycle (if we go 
that far) gives the overall minimizer xn = x = A−1b. 

Figure 6.14: Steepest descent vs. conjugate gradient. 

The main point is always this. When you have orthogonality, projection 
and minimizations can be computed one direction at a time. 

Example 
� 

2 1 1 
⎡ � 

3 
⎡ � 

4 
⎡ 

Suppose Ax = b is � 1 
1 

2 
1 

1 
2 

⎣ � −1 
−1 

⎣ = � 0 
0 

⎣ . 

1From x0 = (0, 0, 0) and r0 = d0 = b the first cycle gives �1 = 
2 and x1 = 1 b = (2, 0, 0).

2 
The new residual is r1 = b − Ax1 = (0, −2, −2). Then the CG algorithm yields 

� 
2 

⎡ � 
3 

⎡ 
8 8 

�1 = 
16 

d1 = � −2 ⎣ �2 = x2 = ⎣ = A−1b ! 
16 

� −1 
−2 −1 

The correct solution is reached in two steps, where normally CG will take n = 3 steps. 
The reason is that this particular A has only two distinct eigenvalues 4 and 1. In that 
case A−1b is a combination of b and Ab, and this best combination x2 is found at cycle 2. 
The residual r2 is zero and the cycles stop early—very unusual. 
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Energy minimization leads in [ ] to an estimate of the convergence rate for the 
error e = x − xk in conjugate gradients, using the A-norm √e√A = 

�
eTAe: 

Error estimate √x − xk √A ≈ 2 

⎦ �
�max −

�
�min 

�k 
√x − x0√A . (19)�

�max + 
�

�min 

This is the best-known error estimate, although it doesn’t account for any clustering 
of the eigenvalues of A. It involves only the condition number �max/�min. Prob­
lem gives the “optimal” error estimate but it is not so easy to compute. That 
optimal estimate needs all the eigenvalues of A, while (19) uses the extreme eigenval­
ues �max(A) and �min(A)—which in practice we can bound above and below. 

Minimum Residual Methods 

When A is not symmetric positive definite, CG is not guaranteed to solve Ax = 
b. We lose control of dTAd in computing �. We will follow van der Vorst [ ] in 
briefly describing the minimum norm residual approach, leading to MINRES 
and GMRES. 

These methods choose xj in the Krylov subspace Kj so that √b −Axj √ is minimal. 
The first orthonormal vectors q1, . . . , qj go in the columns of Qj , so Qj 

TQj = I. As 
in (16) we set xj = Qj y, to express the solution as a combination of those q’s: using (8) 
is 
Norm of residual √rj √ = √b − Axj √ = √b − AQj y√ = √b − Qj+1Hj+1,j y√. (20) 

Here I used the first j columns of Arnoldi’s formula AQ = QH. Since the jth column 
of H is zero after entry j + 1, we only need j + 1 columns of Q on the right side: 

� 
h11 · · · h1j 

⎡ 

First j columns of QH = 
⎤ 

q1 · · · qj+1 

⎥ ���� 
h12 

. . . 

. . . 

. . . 

hjj 

⎢⎢⎢⎣ 
. (21) 

hj+1,j 

The norm in (20) is not changed when we multiply by Qj
T
+1. Our problem becomes: 

Choose y to minimize √rj √ = √Qj
T

+1b − Hj+1,j y√ . (22) 

This is an ordinary least squares problem with only j + 1 equations and j unknowns. 
The right side QT 

j+1b is (√r0√, 0, . . . , 0) as in (16). The rectangular matrix Hj+1,j is 
Hessenberg in (21). We face a completely typical problem of numerical linear algebra: 
Use zeros in H and QT 

j+1b to find a fast algorithm that computes y. The two favorite 
algorithms for this least squares problem are closely related: 

MINRES A is symmetric (likely indefinite, or we use CG) and H is tridiagonal. 

GMRES A is not symmetric and the upper triangular part of H can be full. 
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In both cases we want to clear out that nonzero diagonal below the main diagonal of 
H. The natural way to do that, one entry at a time, is by “Givens rotations.” These 
plane rotations are so useful and simple (the essential part is only 2 by 2) that we 
complete this section by explaining them. 

Givens Rotations 

The direct approach to the least squares solution of Hy = f constructs the normal 
equations HTHy� = HTf . That was the central idea in Chapter 1, but you see what 
we lose. If H is Hessenberg, with many good zeros, HTH is full. Those zeros in H 
should simplify and shorten the computations, so we don’t want the normal equations. 

G

The other approach to least squares is by Gram-Schmidt. We factor H into 
orthogonal times upper triangular. Since the letter Q is already used, the or­
thogonal matrix will be called G (after Givens). The upper triangular matrix is 

−1H. The 3 by 2 case shows how a rotation in the 1–2 plane can clear out h21: 

G

� 
cos λ sin λ 0 

⎡ � 
h11 h12 

⎡ � 
� � 

⎡ 

−1 
21 H = �− sin λ cos λ 0 ⎣ � h21 h22 ⎣ = � 0 ⎣ . (23) 

0 0 1 0 h32 0 � 

That bold zero entry requires h11 sin λ = h21 cos λ, which determines the rotation 
angle λ. A second rotation G−1 

G
32 , in the 2-3 plane, will zero out the 3, 2 entry. Then 

−1G−1H is a square upper triangular matrix U above a row of zeros! 32 21 

The Givens orthogonal matrix is G21G32 but there is no reason to do this multi­
plication. We use each Gij as it is constructed, to simplify the least squares problem. 
Rotations (and all orthogonal matrices) leave the lengths of vectors unchanged: 

�
U 

� �
F 

� 

= G−1G−1 = . (24)Hy − f√ 32 21 Hy − 32 21 f√√ √G−1G−1 √
0 

y − 
e 

√

This length is what MINRES and GMRES minimize. The row of zeros below U 
means that the last entry e is the error—we can’t reduce it. But we get all the other 
entries exactly right by solving the j by j system Uy = F (here j = 2). This gives 
the best least squares solution y. Going back to the original problem of minimizing 
the residual √ = Axj √, the best xj in the jth Krylov space is Qj y.r√ b −√

For non-symmetric A (GMRES rather than MINRES) the recurrence is not short. 
The upper triangle in H can be full, and step j becomes expensive. Possibly it is 
inaccurate as j increases. So we may change “full GMRES” to GMRES(m), which 
restarts the algorithm every m steps. It is not so easy to choose a good m. But 
GMRES is an important algorithm for unsymmetric A. 

Problem Set 6.4 

When the tridiagonal K is preconditioned by P = T (second difference matrix 
Twith T11 = 1) show that T −1K = I + λeT with e1 = [ 1 0 . . . 0 ]. Start from 

1 

1 
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TK = T + e1e1 . Then T −1K = I + (T −1

� 
1 −1 

Tλ = e1 = 
� −1� 2 

· 
−1 

· 
−1 

Te1)e1 . 
⎡ 

⎢
· 

⎢⎣ 

2 

Verify that T −1e1 = β from: 
� 

N 
⎡ � 

1 
⎡ 

0� N −1 ⎢
= 

� ⎢
.�

· 
⎢ �

· 
⎢� ⎣ � ⎣ 

1 0 

Second differences of this linear vector β are zero. Multiply I + βeT times1 

I − (βeT 
1 )/(N + 1) to establish that this is the inverse matrix K −1T . 

2	 For the model of a square grid with separator down the middle, create the 
reordered matrix K in equation (4). Use spy(K) to print its pattern of nonzeros. 

3	 Arnoldi expresses each Aqj as hj+1,j qj+1 + hj,j qj + + h1,j q1. Multiply by qT to· · ·	 i 
Tfind hi,j = qi Aqj . If A is symmetric this is (Aqi)

Tqj . Explain why (Aqi)
Tqj = 0 

for i < j − 1 by expanding Aqi into hi+1,iqi+1 + + h1,iq1. We have a short· · · 
recurrence if A = AT (only hj+1,j and hj,j and hj−1,j are nonzero). 

4	 (This is Problem 3 at the matrix level) The Arnoldi equation AQ = QH gives 
TH = Q−1AQ = QTAQ. Therefore the entries of H are hij = qi Aqj . 

(a) Which Krylov space contains Aqj ? What orthogonality gives hij = 0 when 
i > j + 1 ? Then H is upper Hessenberg. 

(b) If AT = A then hij = (Aqi)
Tqj . Which Krylov space contains Aqi ? What 

orthogonality gives hij = 0 when j > i + 1 ? Now H is tridiagonal. 

5	 Test the pcg(A, ) MATLAB command on the −1, 2, −1 second difference 
matrix A = K. As preconditioner use P = T , when T11 = 1. 

6	 If K = [ b Ab . . . An−1b ] is a Krylov matrix with A = AT, why is the inner 
product matrix KTK a Hankel matrix ? This means constant entries down 
each antidiagonal (the opposite of Toeplitz). Show that (K TK)ij depends on 
i + j. 

7	 These are famous names associated with linear algebra (and a lot of other 
mathematics too). All dead. Write one sentence on what they are known for. 

Arnoldi Gram Jacobi Schur 
Cholesky Hadamard Jordan Schwartz 
Fourier Hankel Kronecker Seidel 
Frobenius Hessenberg Krylov Toeplitz 
Gauss Hestenes-Stiefel Lanczos Vandermonde 
Gershgorin Hilbert Markov Wilkinson 
Givens Householder Schmidt Woodbury 

solution: Jacobi (matrices), Gauss (elimination, numerical integration), 
Lanczos [-1,2,-1 with q_1=(1,0,-)], zeros of cosines/convergence rate?, 
Another q_1? Berresford. 


