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18.085 Quiz 2 November 2, 2007 Professor Strang 

Your PRINTED name is: Grading	 1 
2 
3 

1) (40 pts.) This problem is based on a 5-node graph. 

I have not included edge numbers and arrows. Add them if you want to: 

not needed. 

(a) Find ATA for this graph. A is the incidence matrix. 

(b) The sum of the eigenvalues of ATA is . 

The product of those eigenvalues is . 

(c) What is ATA for a graph with only one edge ? How can that small 

ATA be used in constructing ATA for a large graph ? 

(d) Suppose I want to solve Au = ones(8, 1) = b by least squares. What 

equation gives a best u�? For the incidence matrix A, is there exactly 

one best u� solving that equation ? (If your equation has more than one 

best u�, describe the difference between any two solutions.) 

1 2 

3 4 

5 

1




c 

a 

The matrix AtA is the graph Laplacian, given by D − W were D is the degree matrix and 

W is the adjacency matrix. Therefore it is a 5 × 5 matrix: 

⎡
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎣


3 −1 −1 0 −1 

−1 3 0 −1 −1 

−1 0 3 −1 −1 

0 −1 −1 3 −1 

−1 −1 −1 −1 4 

⎤
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎦


b 

The trace of AtA is the sum of the diagonal entries, so 16. The determinant is the product of 

the eigenvalues. Since any graph Laplacian has a null-vector (namely any constant vector), 

one of the eigenvalues is 0, so the determinant is also 0. 

The AtA for a one edge graph i ⎛
⎝


1 −1 

−1 1 

⎞
⎠


To construct AtA for a larger graph from these element matrices, we construct one for each 

edge of the graph and add them together according to the following scheme. If there are n 

nodes, start with an n× n matrix of zeroes M . Then, for an edge connecting node i to node 

j, add 1 to Mii and Mjj and −1 to Mij and Mji. Do this for each edge and the end result 

is AtA for the larger graph. 

d 

The least squares approximation to Au = b is given by the solution of AtAû = Atb. In the 

case of the incidence matrix, there will not be one best solution, since for any solution û

minimizing square error, if v is in the nullspace of A, then û + v has the same square error. 
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Since A has non-trivial nullspace, there is no best solution. Any two solutions will differ by 

an element of the nullspace, namely a constant vector. 
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2) (30 pts.) (a) Suppose A is an m by n matrix of rank r (so it has r independent 

columns). How many independent solutions to Au = 0 and ATw = 0? 

(b) Draw a full	 set of mechanisms (solutions to e = Au = 0 with no 

stretching) for this truss with unit length bars and 45◦ angles. 

1 

2 

3 

H	 V H V(c) Suppose a mechanism has u1 = .01. What are u1 and u3 and u3 ? 

What is the actual new length of the bar between joints 1 and 3 ? 
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a 

An m×n matrix with rank r has n−r independent solutions to Au = 0 and m−r independent 

solutions to Atw = 0. This is an application of the Rank-Nullity Theorem, and the fact that 

the rank of At equals the rank of A. 

b 

There is only one mechanism. 

As a vector it is written
 ⎡
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

1 

−1 

0 

0 

1 

1 

⎤
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎣
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c 

If node 1 moves .01 horizontally, then the corresponding mechanism is


⎡
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


.01


−.01


0


0


.01


.01


⎤
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


H H V Vso we have u
 .01 and u
 =
 −.01. The actual new length of the bar connecting
= u
 = u
 =
1 3 3 1 

nodes 1 and 3 is 

Lnew = 

�
Lold 

2 + (0.02)2 
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3) (30 pts.) This problem is about the equation 

−u ��(x) + u(x) = 1 with u(0) = 0 and u(1) = 0 . 

(a) Multiply by a test function v(x). Find the weak form of the equation, 

after an integration by parts. 

(b) With h = Δx = 1
3 

draw the admissible piecewise linear trial functions 

φ1(x), . . . , φn(x). What is n ? With test functions = trial functions, 

give a formula for the entry K12 in the finite element equation KU = F . 

(c) Find all the numbers in K and F . 
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a 

First, multiply the equation by the test function, v(x). 

−u��(x)v(x) + u(x)v(x) = v(x) 

Integrate from x = 0 to x = 1. 

� 1 � 1 � 1 

− 
0 

u��(x)v(x)dx + 
0 

u(x)v(x)dx = 
0 

v(x)dx 

The first term can be integrated by parts like we did for the equation in the book. 

� 1 � 1 

u��(x)v(x)dx = [u�(x)v(x)]
1
0 − u�(x)v�(x)dx 

0 0 

Here’s the first term (the integrated term) written out. 

[u�(x)v(x)]
1
0 = u�(1)v(1) − u�(0)v(0) 

Since the boundary conditions don’t require u�(0) or u�(1) to necessarily be zero, to get rid 

of the integrated term we must have v(0) = 0 and v(1) = 0. (This is a requirement for the 

test functions.) 

Assuming all the test functions v(x) have v(0) = 0 and v(1) = 0, the integrated term equals 

zero. Plugging in the other term from the integration by parts gives you the weak form of 

the equation. � 1 � 1 � 1 

u�(x)v�(x)dx + u(x)v(x)dx = v(x)dx 
0 0 0 

For this equation, the weak form has an additional term, the 
�

0

1 
u(x)v(x)dx term, than the 

equation discussed in the book. 

b 

The piecewise linear trial functions φi(x) are the standard “hat” functions described in the 

book. For this problem, as we did in the example in the book, we’re using the same trial 

functions as test functions. As mentioned above, the test functions must be zero at x = 0 

and x = 1, so there are only two admissible trial functions, φ1(x) centered at x = 
3
1 and 
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� 

� 

Figure 1: Admissible trial functions, centered at x = 1
3 

and x = 2
3 

φ2(x) centered at x = 
3
2 , both of which are zero at x = 0 and x = 1. So n = 2. See figure 1


for a crude drawing.


Because the weak form of the equation for this problem has an additional term than the


equation in the book, the formula for Kij has an additional term.


� 1 � 1 

Kij = φ�i(x)φ�j(x)dx + φi(x)φj(x)dx 
0 0 

Since the right hand side is the same as in the book, the formula for Fi is the same. 

� 1 

Fi = φi(x)dx 
0 

If you want to see where the new formula for Kij comes from, substitute u(x) = U1φ1(x) + 

U2φ2(x) and, in two separate equations, v(x) = φ1(x) and v(x) = φ2(x). 

1� 1 �
(U1φ1

� (x) + U2φ2
� (x)) φ1

� (x)dx + (U1φ1(x) + U2φ2(x)) φ1(x)dx = 
0 0 

1 

φ1(x)dx 
0 

1� 1 �
(U1φ1

� (x) + U2φ2
� (x)) φ2

� (x)dx + (U1φ1(x) + U2φ2(x)) φ2(x)dx = 
0 0 

1 

φ2(x)dx 
0 

To rewrite this as a linear system KU = F , regroup the terms to see what’s multiplying U1 

and U2 in each equation. (The constants U1 and U2 can be taken out of the integrals.) For 
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� �

�
 �


c 

� �
K12     

example, you can see what’s multiplying U2 in the first equation – this is K12. 

 1  1 

= φ�2(x)φ�1(x)dx + φ2(x)φ1(x)dx
0 0 

You can check that the general formula for Kij above is right by looking at what multiplies 

Uj in equation i. 

To actually calculate the entries of K and F , break up each integral into pieces, as appro­

priate. For example, take K11. 

� 1 � 1 

K11 = φ�1(x)φ�1(x)dx + φ1(x)φ1(x)dx 
0 0 

= 3 

0 

1 1 
= 3 + 3 + + 

9 9 
2 

= 6 + 
9 

56 
= 

9 

3dx + 

1 2 
3 3 

1 
3 

(−3) (−3)dx ··

0 

1 2 
3 3 

1 
3 

(3x) (3x)dx + · (2 − 3x)(2 − 3x)dx
+


Notice that, besides the 6 which appears in the K11 in the book, there’s another term, 
9
2 ,


because of the additional term in the weak form of the equation.


The result of calculating all the numbers Kij is below.


K
 =


⎛
⎝


6 −3


−3 6


⎞
⎠
+


⎛
⎝


⎞
⎠
=


⎛
⎝


⎞
⎠


2 1 
9 18 

1 2 

56 53−

9 18 

53 56−

18 9 18 9 

(I may have made a mistake so feel free to let me know if you get different numbers!) The 

result of calculating F is the same as the first two entries of F in the book. 

F =


⎛
⎝


⎞
⎠


1 
3 

1 
3 
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