

18.085 Computational Science and Engineering I Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Your name is: ______ Grading 1 (36) 2 (36) 2 (36) 3 (28) _____ Total

In Questions 1 and 2, part (a) is checked by a later part—and Question 3 is not hard. Thank you for taking 18.085. I appreciate the good homeworks and consistent effort. I hope very much that you will find this subject useful.

(1a) GRAPH the 2π -periodic f(x) defined between $-\pi$ and π by

$$f(x) = e^x \text{ for } -\pi \le x \le 0, \quad f(x) = e^{-x} \text{ for } 0 \le x \le \pi.$$

Find the Fourier coefficients c_k in $f(x) = \sum c_k e^{ikx}$ directly from the standard integral formula.

- (1b) Draw the graphs of df/dx and d^2f/dx^2 between $-\pi$ and π . What rate of decay for the coefficients c_k ?
- (1c) Find the same coefficients c_k in a different way, starting from

$$-\frac{d^2f}{dx^2} + f(x) = \text{ what function } R(x)?$$

With $f(x) = \sum c_k e^{ikx}$ take Fourier coefficients of both sides of this equation and solve for c_k .

- (2a) Find the *cyclic* convolution $\mathbf{w} = \mathbf{u} * \mathbf{v}$ (N = 4) of the vectors $\mathbf{u} = (1, 0, 1, 0)$ and $\mathbf{v} = (0, 1, 0, 1)$.
- (2b) Find the discrete Fourier coefficients c_k and d_k (4-point DFT) of those vectors \boldsymbol{u} and \boldsymbol{v} respectively. From the c_k and d_k find the Fourier coefficients h_k of their convolution $\boldsymbol{w} = \boldsymbol{u} * \boldsymbol{v}$. How does this answer confirm that \boldsymbol{w} in part (a) was correct??
- (2c) For some 4-component vectors z the cyclic convolution with u = (1, 0, 1, 0) is u * z = (0, 0, 0, 0). Describe the components of $z = (z_0, z_1, z_2, z_3)$ and also its Fourier coefficients (C_0, C_1, C_2, C_3) .

(3a) Find the Fourier integral transform $\widehat{f}(k)$ of the square wave f(x) between -1 and 1:

$$f(x) = 1$$
 for $0 \le x \le 1$, $f(x) = -1$ for $-1 \le x < 0$, $f(x) = 0$ for $|x| > 1$.

(3b) Find the Fourier integral transform \widehat{D} of the *derivative* of that square wave. Also find the transform \widehat{C} of the *convolution* of that square wave with its derivative. Factors of 2π are forgiven . . .