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18.085 FALL 2002 QUIZ 3 SOLUTIONS

PROBLEM 1

a) The graph looks like a symmetric butterfly. It is periodic with no discontinuitics (but has kinks at z = 0 and
z = k=, where the slopc jumps).
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b) df /dz: The right half of the graph becomes —e™: now it'’s an odd butterfly. d2f/dz?: Back to the cven
butterfly with 8-functions —25 (z) and 2e~7§ (z — mr). The d-functions come from jumps in df [da.
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then (recall & (z) = 5= Y e, &L — ik):
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Equate cocflicicnts of like terms:
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The solution of this algebraic equation is the same answer as before,
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PROBLEM 2

a) The casicst way to perform this convolution is the matrix way:
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The answer in part a) is confirmed!
c) We have

DFT (u=z)= (%Cl,o, %Cg,(])

Thercfore, we need €y = 0, C5 = 0 in order to have u* 2z = (0,0,0,0). So thce Fouricr cocfficients of z must be
(0, a,0,b) for any @ and b. Then
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‘We can check this result by convolution:

1010 x
0101 y .
1010 —z
010 1 —y

PROBLEM 3

a) Since f () vanishes outside of [—1,1] the limits of integration arc —1 and 1:
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b} Multiply by ik for the derivative:
DE)=2-e* - = _2(cosk — 1)
Convolution becomes multiplication in the Fourier domain. Thercfore the transform is

CB) = D (k) F (k) — —41'(“’%‘1)2.

This confirms that the derivative D = df /dx consists of d-functions at z = 0,—1,1.



