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18.085 - Mathematical Methods for Engineers I Prof. Gilbert Strang
Solutions - Problem Set 5

Section 2.7, Problem 1: How many independent solutions to Au = 0. Draw them and find solutions
w=(ulf uY ... ull uY). What shapes are A and ATA? First rows?

6 bars = n = 2(6) — 4 = 8 unknown disp. So Au = 0 has 8 — 6 = 2 independent solutions (mechanisms).
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A = 6 x 8 matrix AT = 8 x 6 matrix AT A = 8 x 8 matrix

First row of A:

[-1 0100 0 0 0]

First row of AT A:
[1 0 -1 0 0 0 O O]

Section 2.7, Problem 2: 7 bars, N =5 son =2N —r = 2(5) — 2 = 8 unknown displacements.

a) What motion solves Au = 07

)
b) By adding one bar, can A become square/invertible?
c) Write out row 2 of A (for bar 2 at 45° angle).

)

d) Third equation in ATw = f with right side f?
Solution:

a) 8 — 7 =1 rigid motion, rotation about node 5.

b) No — rigid motion only, so adding a bar won’t get rid of motion. Needs another support.

) [0 0 —cos(5) sin(5) cos(3) ~sn(3) 0 0]=[0 0 —F L L £ 00

d) wi + f +wgcosf + wg cosf = 0.

—fH = wy 4wy cosh —wycosh, cosh =1/V2.




Section 2.7, Problem 3:
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4
a) Find 8 — 4 independent solutions to Au = 0.
b) Find 4 sets of f’s so ATw = f has a solution.
¢) Check that uTf = 0 for those four u’s and f’s.
a) Solutions:
horizontal: Uy = [ 1 0 1 0 1 0 1 0 }
vertical: Uy = [ 0 1 0 1 0 1 0 1 }
rotation (about node 3): w3 = [ 1 0 1 -1 0 0 0 -1]
mechanism: Uy = [ 1 0 1 0 0 0 0 0 } .
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¢) Bachulf; =0

Section 2.7, Problem 5: Is AT A positive definite? Semidefinite? Draw complete set of mechanisms.

8 bars, 7 nodes, 4 fixed displacements (uf!,u, vt u¥). So n = 2(7) —4 = 10, and 10 — 8 = 2 solutions.
There are 2 solutions, therefore the truss is unstable — not positive definite.

AT A must be positive semidefinite because A has dependent columns.



Section 3.1, Problem 1: Constant ¢, decreasing f = 1 — z, find w(z) and u(x) as in equations 9-10. Solve
with w(1) =0,u(1) = 0.

w() = —/Oz(l—s)ds—&-Clz (—x+x—2)+cl
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w(l) = O:>—<1—5)+01=O:>01:—
x2 1
= w(z) = 7—$+§

Case 2: u(1) = 0 and u(0) =0 (fixed, fixed).
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Section 3.1, Problem 5: f = constant, ¢ jumps from ¢ =1 for z < % to ¢ =2 for x > % Solve —d% — f

dv
with w(1) = 0 as before, then solve c2* = w with u(0) = 0.
w(x) = [, fdr=(1—-2)f
2

For 0 <z <1, %:(l—z)f,u(()):O—>u(x):fom(1—cc)fdx:(:r—%)f. Sou(3)=2f.

For i <z <1, %z(l—m)ﬁu(%):%f—>u(m):%flm/g(l—x)fdx—i—u(%) =L -1r1—a)2

In summary,

u(e) = (1—2)f u() = {




Section 3.1, Problem 10: Use three hat functions with A = 1 to solve —u” = 2 with u(0) = u(1) = 0.
Verify that the approximation U matches © = x — 22 at the nodes.

1
1) [, clz )8_8_ :c—fo x)v(z)dx
2) v; =
3) Assume ¢(z) =1
1) Let f(z) =
o= [P1¢(a)de = Lbh=1.1.1=-1
2 f3/4 1 ¢o(x) = Ibh=1. right side
Fy = f1/21'¢3$)$ = 3bh=73
Kin = f01/2c(x)a;’2-%dm:fl/4l 1-4dx +f11//42 (—4)-4dx =8.
Ky = Ky = Olc(z)ai;z- %1;2 d:c—fl/2 . Adr = —16 (1) = —4.
K13 = K31 = 01 C(I)a—; . % dxr = 0.
8 —4 0 Uuq 0.25
SoKU=| -4 8 —4 up | = 1| 025 | =F.
0 -4 8 U3 0.25
0.1875
Solving yields u = 0.250 |. This approximation matches u = z — 22 at the nodes since when
0.1875
0.25 0.1875
x=| 050 |,u(z)=| 0.250 |, as desired.
0.75 0.1875

Section 3.1, Problem 18: Fixed-free hanging bar u(1) = 0 is a natural boundary condition. To the
N hat functions ¢; at interior meshpoints, add the half-hat that goes up to Unxy; = 1 at the endpoint
2z =1= (N + 1)h. This ¢n+1 = Vy+1 has nonzero slope %

a) The N by N stiffness matrix K for —u,, now has an extra row and column. How does the new last
row of K41 represent u'(1) = 07

=
=

Ui—1 + 2U; — Uigp1 = [

For row n 4+ 1, —uy, 4+ 2upt1 — Unt2 = fug1. I Upia = upt1, then the slope at (n 4 1) is zero, and so
we have —u, + Upy1 = fri1-



b) For constant load, find the new last component Fiq1 = f foVny1dz. Solve Ky11U = F and compare

U with the true mesh values of fj (:C — %:102)
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Ko = KQI_/c(;c)%-a—;d:C—/l/g 1(—3)(3) dx:—3:K23:K32.
Ki3 = Kz =0. K33 = 3.
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Indeed, considering u = fy (:C — 1162) , we find that the values exactly match up:
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