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Symmetric matrices and positive definite­ness 

Symmetric matrices are good – their eigenvalues are real and each has a com­
plete set of orthonormal eigenvectors. Positive definite matrices are even bet­
ter. 

Symmetric matrices 

A symmetric matrix is one for which A = AT . If a matrix has some special 
property (e.g. it’s a Markov matrix), its eigenvalues and eigenvectors are likely 
to have special properties as well. For a symmetric matrix with real number 
entries, the eigenvalues are real numbers and it’s possible to choose a complete 
set of eigenvectors that are perpendicular (or even orthonormal). 

If A has n independent eigenvectors we can write A = SΛS−1. If A is sym­
metric we can write A = QΛQ−1 = QΛQT , where Q is an orthogonal matrix. 
Mathematicians call this the spectral theorem and think of the eigenvalues as the 
“spectrum” of the matrix. In mechanics it’s called the principal axis theorem. 

In addition, any matrix of the form QΛQT will be symmetric. 

Real eigenvalues 

Why are the eigenvalues of a symmetric matrix real? Suppose A is symmetric 
and Ax = λx. Then we can conjugate to get Ax = λx. If the entries of A 
are real, this becomes Ax = λx. (This proves that complex eigenvalues of real 
valued matrices come in conjugate pairs.) 

Now transpose to get xT AT = xTλ. Because A is symmetric we now have 
xT A = xT λ. Multiplying both sides of this equation on the right by x gives: 

xT Ax = xTλx. 

On the other hand, we can multiply Ax = λx on the left by xT to get: 

xT Ax = xTλx. 

Comparing the two equations we see that xT λx = xTλx and, unless xT x is zero, 
we can conclude λ = λ is real. 

How do we know xTx = 0? ⎤⎡ ⎢⎢⎢⎣ 
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If x = 0 then xTx = 0. 
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With complex vectors, as with complex numbers, multiplying by the conju­
gate is often helpful. 

Symmetric matrices with real entries have A = AT , real eigenvalues, and 
perpendicular eigenvectors. If A has complex entries, then it will have real 

Teigenvalues and perpendicular eigenvectors if and only if A = A . (The proof 
of this follows the same pattern.) 

Projection onto eigenvectors 

If A = AT , we can write: 

A = QΛQT ⎡⎤⎡ ⎤Tλ1 q1 
T 
2 
. . 

⎢⎢⎢⎣ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

q ⎥⎥⎥⎦ 

λ2 
= q1 q2 qn· · · . . . . 

T 
nλn q

= λ1q1q1 
T + λ2q2q2 

T + + λnqnqT · · · n 

The matrix qkqk
T is the projection matrix onto qk, so every symmetric matrix is 

a combination of perpendicular projection matrices. 

Information about eigenvalues 

If we know that eigenvalues are real, we can ask whether they are positive or 
negative. (Remember that the signs of the eigenvalues are important in solving 
systems of differential equations.) 

For very large matrices A, it’s impractical to compute eigenvalues by solv­
ing |A − λI| = 0. However, it’s not hard to compute the pivots, and the signs 
of the pivots of a symmetric matrix are the same as the signs of the eigenvalues: 

number of positive pivots = number of positive eigenvalues. 

Because the eigenvalues of A + bI are just b more than the eigenvalues of 
A, we can use this fact to find which eigenvalues of a symmetric matrix are 
greater or less than any real number b. This tells us a lot about the eigenvalues 
of A even if we can’t compute them directly. 

Positive definite matrices 

A positive definite matrix is a symmetric matrix A for which all eigenvalues are 
positive. A good way to tell if a matrix is positive definite is to check that all 
its pivots are positive. 

2 



� � 

� � 

5 2Let A = 2 3 . The pivots of this matrix are 5 and (det A)/5 = 11/5. 

The matrix is symmetric and its pivots (and therefore eigenvalues) are positive, 
so A is a positive definite matrix. Its eigenvalues are the solutions to: 

|A − λI| = λ2 − 8λ + 11 = 0, 

i.e. 4 ±
√

5. 
The determinant of a positive definite matrix is always positive but the de­

terminant of −
0
1 

−3
0 is also positive, and that matrix isn’t positive defi­

nite. If all of the subdeterminants of A are positive (determinants of the k by 
k matrices in the upper left corner of A, where 1 ≤ k ≤ n), then A is positive 
definite. 

The subject of positive definite matrices brings together what we’ve learned 
about pivots, determinants and eigenvalues of square matrices. Soon we’ll 
have a chance to bring together what we’ve learned in this course and apply it 
to non-square matrices. 
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