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  Singular value decomposition 

The singular value decomposition of a matrix is usually referred to as the SVD. 
This is the final and best factorization of a matrix: 

A = UΣVT 

where U is orthogonal, Σ is diagonal, and V is orthogonal. 
In the decomoposition A = UΣVT , A can be any matrix. We know that if A 

is symmetric positive definite its eigenvectors are orthogonal and we can write 
A = QΛQT . This is a special case of a SVD, with U = V = Q. For more general 
A, the SVD requires two different matrices U and V. 

We’ve also learned how to write A = SΛS−1, where S is the matrix of n 
distinct eigenvectors of A. However, S may not be orthogonal; the matrices U 
and V in the SVD will be. 

How it works 

We can think of A as a linear transformation taking a vector v1 in its row space 
to a vector u1 = Av1 in its column space. The SVD arises from finding an 
orthogonal basis for the row space that gets transformed into an orthogonal 
basis for the column space: Avi = σiui. 

It’s not hard to find an orthogonal basis for the row space – the Gram-
Schmidt process gives us one right away. But in general, there’s no reason 
to expect A to transform that basis to another orthogonal basis. 

You may be wondering about the vectors in the nullspaces of A and AT . 
These are no problem – zeros on the diagonal of Σ will take care of them. 

Matrix language 

The heart of the problem is to find an orthonormal basis v1, v2, ...vr for the row 
space of A for which 

A v1 v2 vr = σ1u1 σ2u2 σrur· · · · · · ⎤⎡ 

= u1 u2 ur· · · 
⎢⎢⎢⎣ 

σ1 
σ2 ⎥⎥⎥⎦ ,. . . 

σr 

with u1, u2, ...ur an orthonormal basis for the column space of A. Once we 
add in the nullspaces, this equation will become AV = UΣ. (We can complete 
the orthonormal bases v1, ...vr and u1, ...ur to orthonormal bases for the entire 
space any way we want. Since vr+1, ...vn will be in the nullspace of A, the 
diagonal entries σr+1, ...σn will be 0.) 

The columns of U and V are bases for the row and column spaces, respec­
tively. Usually U �= V, but if A is positive definite we can use the same basis 
for its row and column space! 
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Calculation


4 4Suppose	 A is the invertible matrix −3 3 . We want to find vectors v1 

and v2 in the row space R2, u1 and u2 in the column space R2, and positive 
numbers σ1 and σ2 so that the vi are orthonormal, the ui are orthonormal, and 
the σi are the scaling factors for which Avi = σiui. 

This is a big step toward finding orthonormal matrices V and U and a di­
agonal matrix Σ for which: 

AV = UΣ. 

Since V is orthogonal, we can multiply both sides by V−1 = VT to get: 

A = UΣVT . 

Rather than solving for U, V and Σ simultaneously, we multiply both sides by 
AT = VΣTUT to get: 

AT A = VΣU−1UΣVT 

= VΣ2VT ⎡ ⎤ 
σ2 

1 
σ2 

2
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
= V VT .. . . 

σ2 
n 

This is in the form QΛQT ; we can now find V by diagonalizing the symmetric 
positive definite (or semidefinite) matrix AT A. The columns of V are eigenvec­
tors of AT A and the eigenvalues of AT A are the values σi 

2. (We choose σi to be 
the positive square root of λi.) 

To find U, we do the same thing with AAT . 

SVD example 

4 4We return to our matrix A = −3 3 . We start by computing 

� � 

AT A =	
4 −3 4 4 
4 3 −3 3 

25 7 
= .7 25 

The eigenvectors of this matrix will give us the vectors vi, and the eigenvalues 
will gives us the numbers σi. 
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Two orthogonal eigenvectors of AT A are 1
1 and −1

1 . To get an or­

1/
√

2 1/
√

2thonormal basis, let v1 = and v2 = . These have eigen­
1/

√
2 −1/

√
2 

values σ1
2 = 32 and σ2

2 = 18. We now have: 

A U Σ VT 

4 4 4
√

2 0 1/
√

2 1/
√

2 
= . −3 3 0 3

√
2 1/

√
2 −1/

√
2 

We could solve this for U, but for practice we’ll find U by finding orthonor­
mal eigenvectors u1 and u2 for AAT = UΣ2UT . � � � � 

AAT = 
4 4 4 −3 

−3 3 4 3 

32 0 
= .0 18 

Luckily, AAT happens to be diagonal. It’s tempting to let u1 = 1 and u2 = 0 

0 0 
1 , as Professor Strang did in the lecture, but because Av2 = −3

√
2 

we 

0 1 0instead have u2 = −1 and U = 0 −1 . Note that this also gives us a 

chance to double check our calculation of σ1 and σ2. 
Thus, the SVD of A is: 

A U Σ VT 

4 4 1 0 4
√

2 0 1/
√

2 1/
√

2 
= . −3 3 0 −1 0 3

√
2 1/

√
2 −1/

√
2 

Example with a nullspace 

4 3Now let A = 8 6 . This has a one dimensional nullspace and one dimen­

sional row and column spaces. � � 
4The row space of A consists of the multiples of . The column space 3 

4of A is made up of multiples of . The nullspace and left nullspace are 8 
perpendicular to the row and column spaces, respectively. � � 

.8Unit basis vectors of the row and column spaces are v1 = .6 and u1 = 
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. To compute σ1 we find the nonzero eigenvalue of AT A. 

� � � � 

AT A =	
4 8 4 3 
3 6 8 6 

80 60 
= .60 45 

Because this is a rank 1 matrix, one eigenvalue must be 0. The other must equal 
the trace, so σ1

2 = 125. After finding unit vectors perpendicular to u1 and v1 
(basis vectors for the left nullspace and nullspace, respectively) we see that the 
SVD of A is: � � � � � � � 

4 3 1 1 2 
� √

125 0 .8 .6 
8 6 = √

5 2 −1 0 0 .6 −.8 . 

A	 U Σ VT 

The singular value decomposition combines topics in linear algebra rang­
ing from positive definite matrices to the four fundamental subspaces. 

v1, v2, ...vr is an orthonormal basis for the row space.

u1, u2, ...ur is an orthonormal basis for the column space.

vr+1, ...vn is an orthonormal basis for the nullspace.

ur+1, ...um is an orthonormal basis for the left nullspace.


These are the “right” bases to use, because Avi = σiui. 

4 



MIT OpenCourseWare 
http://ocw.mit.edu 

18.06SC Linear Algebra 
Fall 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

