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Exercises on singular value decomposition 

Problem 29.1: (Based on 6.7 #4. Introduction to Linear Algebra: Strang)

Verify that if we compute the singular value decomposition A = UΣVT of


1 1the Fibonacci matrix A = ,1 0 
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5 0Σ = 2 √
5−1 . 

0 2 

Solution: 

AT A = AAT = 
2 1 .1 1 

The eigenvalues of this matrix are the roots of x2 − 3x + 1, which are 
3 ±

√
5

. Thus we have: 
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To check that Σ = 
σ1 
0 

0 
σ2 

, we will square the entries of the matrix Σ 

given above. � �2 
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Problem 29.2: (6.7 #11.) Suppose A has orthogonal columns w1, w2, ..., 
wn of lengths σ1, σ2, ..., σn. Calculate AT A. What are U, Σ, and V in the 
SVD? 

1 



Solution: Since the columns of A are orthogonal, AT A is a diagonal 
matrix with entries σ1

2, ..., σn 
2. Since AT A = VΣ2VT, we find that Σ2 is the 

matrix with diagonal entries σ1
2, ...,σn 

2 and thus that Σ is the matrix with 
diagonal entries σ1, ..., σn. 

Referring again to the equation AT A = VΣ2VT, we conclude also that 
V = I. 

The equation A = UΣVT then tells us that U must be the matrix whose 
1

columns are wi. σi 
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