
18.06 Linear Algebra, Fall 1999 
Transcript – Lecture 30 

OK, this is the lecture on linear transformations. Actually, linear algebra courses used 
to begin with this lecture, so you could say I'm beginning this course again by talking 
about linear transformations. 

In a lot of courses, those come first before matrices. The idea of a linear 
transformation makes sense without a matrix, and physicists and other -- some 
people like it better that way. They don't like coordinates. 

They don't want those numbers. They want to see what's going on with the whole 
space. But, for most of us, in the end, if we're going to compute anything, we 
introduce coordinates, and then every linear transformation will lead us to a matrix. 

And then, to all the things that we've done about null space and row space, and 
determinant, and eigenvalues -- all will come from the matrix. 

But, behind it -- in other words, behind this is the idea of a linear transformation. Let 
me give an example of a linear transformation. So, example. 

Example one. A projection. I can describe a projection without telling you any 
matrix, anything about any matrix. I can describe a projection, say, this will be a 
linear transformation that takes, say, all of R^2, every vector in the plane, into a 
vector in the plane. And this is the way people describe, a mapping. It takes every 
vector, and so, by what rule? So, what's the rule, is, I take a -- so here's the plane, 
this is going to be my line, my line through my line, and I'm going to project every 
vector onto that line. So if I take a vector like b -- or let me call the vector v for the 
moment -- the projection -- the linear transformation is going to produce this vector 
as T(v). So T -- it's like a function. 

Exactly like a function. You give me an input, the transformation produces the 
output. 

So transformation, sometimes the word map, or mapping is used. A map between 
inputs and outputs. So this is one particular map, this is one example, a projection 
that takes every vector -- here, let me do another vector v, or let me do this vector 
w, what is T(w)? You see? There are no coordinates here. 

I've drawn those axes, but I'm sorry I drew them, I'm going to remove them, that's 
the whole point, is that we don't need axes, we just need -- so guts -- get it out of 
there, I'm not a physicist, so I draw those axes. So the input is w, the output of the 
projection is, project on that line, T(w). OK. 

Now, I could think of a lot of transformations T. 

But, in this linear algebra course, I want it to be a linear transformation. So here are 
the rules for a linear transformation. Here, see, exactly, the two operations that we 



can do on vectors, adding and multiplying by scalars, the transformation does 
something special with respect to those operations. 

So, for example, the projection is a linear transformation because -- for example, if I 
wanted to check that one, if I took v to be twice as long, the projection would be 
twice as long. 

If I took v to be minus -- if I changed from v to minus v, the projection would 
change to a minus. 

So c equal to two, c equal minus one, any c is OK. So you see that actually, those 
combine, I can combine those into one statement. What the transformation does to 
any linear combination, it must produce the same combination of T(v) and T(w). 
Let's think about some -- I mean, it's like, not hard to decide, is a transformation 
linear or is it not. 

Let me give you an example so you can tell me the answer. Suppose my 
transformation is -- here's another example two. 

Shift the whole plane. So here are all my vectors, my plane, and every vector v in 
the plane, I shift it over by, let's say, three by some vector v0. 

Shift whole plane by v0. So every vector in the plane -- this was v, T(v) will be 
v+v0. There's T(v). 

Here's v0. There's the typical v. 

And there's T(v). You see what this transformation does? Takes this vector and adds 
to it. Adds a fixed vector to it. 

Well, that seems like a pretty reasonable, simple transformation, but is it linear? The 
answer is no, it's not linear. 

Which law is broken? Maybe both laws are broken. 

Let's see. If I double the length of v, does the transformation produce something 
double -- do I double T(v)? No. 

If I double the length of v, in this transformation, I'm just adding on the same one --
same v0, not two v0s, but only one v0 for every vector, so I don't get two times the 
transform. Do you see what I'm saying? That if I double this, then the transformation 
starts there and only goes one v0 out and doesn't double T(v). In fact, a linear 
transformation -- what is T of zero? That's just like a special case, but really worth 
noticing. The zero vector in a linear transformation must get transformed to zero. 

It can't move, because, take any vector V here -- well, so you can see why T of zero 
is zero. Take v to be the zero vector, take c to be three. Then we'd have T of zero 
vector equaling three T of zero vector, the T of zero has to be zero. 

OK. So, this example is really a non-example. Shifting the whole plane is not a linear 
transformation. Or if I cooked up some formula that involved squaring, or the 
transformation that, also non-example, how about the transformation that, takes any 



vector and produces its length? So there's a transformation that takes any vector, 
say, any vector in R^3, let me just -- I'll just get a chance to use this notation again. 

Suppose I think of the transformation that takes any vector in R^3 and produces this 
number. 

So that, I could say, is a member of R^1, for example, if I wanted. 

Or just real numbers. That's certainly not linear. 

It's true that the zero vector goes to zero. 

But if I double a vector, it does double the length, that's true. But suppose I multiply 
a vector by minus two. What happens to its length? It just doubles. It doesn't get 
multiplied by minus two. So when c is minus two in my requirement, I'm not 
satisfying that requirement. 

So T of minus v is not minus v -- minus, the length, it's just the length. OK, so that's 
another non-example. Projection was an example, let me give you another example. 

I can stay here and have a -- this will be an example that is a linear transformation, 
a rotation. 

Rotation by -- what shall we say? By 45 degrees. OK? So again, let me choose this, 
this will be a mapping, from the whole plane of vectors, into the whole plane of 
vectors, and it just -- here is the input vector v, and the output vector foam this 45 
degree rotation is just rotate that thing by 45 degrees, T(v). 

So every vector got rotated. You see that I can describe this without any 
coordinates. And see that it's linear. 

If I doubled v, the rotation would just be twice as far out. If I had v+w, and if I 
rotated each of them and added, the answer's the same as if I add and then rotate. 
That's what the linear transformation is. OK, so those are two examples. 

Two examples, projection and rotation, and I could invent more that are linear 
transformations where I haven't told you a matrix yet. Actually, the book has a 
picture of the action of linear transformations -- actually, the cover of the book has 
it. So, in this section seven point one, we can think of a -- actually, here let's take 
this linear transformation, rotation, suppose I have, as the cover of the book has, a 
house in R^2. 

So instead of this, let me take a small house in R^2. So that's a whole lot of points. 
The idea is, with this linear transformation, that I can see what it does to everything 
at once. 

I don't have to just take one vector at a time and see what T of V is, I can take all 
the vectors on the outline of the house, and see where they all go. 

In fact, that will show me where the whole house goes. 

So what will happen with this particular linear transformation? The whole house will 
rotate, so the result, if I can draw it, will be, the house will be sitting there. 



OK. And, but suppose I give some other examples. Oh, let me give some examples 
that involve a matrix. Example three -- and this is important -- coming from a matrix 
at -- we always call A. 

So the transformation will be, multiply by A. 

There is a linear transformation. And a whole family of them, because every matrix 
produces a transformation by this simple rule, just multiply every vector by that 
matrix, and it's linear, right? Linear, I have to check that A(v) -- A times v plus w 
equals Av plus A w, which is fine, and I have to check that A times vc equals c A(v). 

Check. Those are fine. 

So there is a linear transformation. And if I take my favorite matrix A, and I apply it 
to all vectors in the plane, it will produce a bunch of outputs. See, the idea is now 
worth thinking of, like, the big picture. 

The whole plane is transformed by matrix multiplication. 

Every vector in the plane gets multiplied by A. 

Let's take an example, and see what happens to the vectors of the house. So this is 
still a transformation from plane to plane, and let me take a particular matrix A --
well, if I cooked up a rotation matrix, this would be the right picture. 

If I cooked up a projection matrix, the projection would be the picture. Let me just 
take some other matrix. Let me take the matrix one zero zero minus one. What 
happens to the house, to all vectors, and in particular, we can sort of visualize it if 
we look at the house -- so the house is not rotated any more, what do I get? What 
happens to all the vectors if I do this transformation? I multiply by this matrix. Well, 
of course, it's an easy matrix, it's diagonal. 

The x component stays the same, the y component reverses sign, so that like the 
roof of that house, the point, the tip of the roof, has an x component which stays the 
same, but its y component reverses, and it's down here. 

And, of course, what we get is, the house is, like, upside down. 

Now, I have to put -- where does the door go? I guess the door goes upside down 
there, right? So here's the input, here's the input house, and this is the output. OK. 

This idea of a linear transformation is like kind of the abstract description of matrix 
multiplication. 

And what's our goal here? Our goal is to understand linear transformations, and the 
way to understand them is to find the matrix that lies behind them. 

That's really the idea. Find the matrix that lies behind them. Um, and to do that, we 
have to bring in coordinates. 



We have to choose a basis. So let me point out what's the story -- if we have a linear 
transformation -- so start with -- start. Suppose we have a linear transformation. Let 
-- from now on, let T stand for linear transformations. 

I won't be interested in the nonlinear ones. 

Only linear transformations I'm interested in. 

OK. I start with a linear transformation T. Let's suppose its inputs are vectors in 
R^3. OK? And suppose its outputs are vectors in R^2, for example. OK. 

What's an example of such a transformation, just before I go any further? Any 
matrix of the right size will do this. So what would be the right shape of a matrix? 
So, for example -- I'm wanting to give you an example, just because, here, I'm 
thinking of transformations that take three-dimensional space to two-dimensional 
space. And I want them to be linear, and the easy way to invent them is a matrix 
multiplication. So example, T of v should be any A v. Those transformations are 
linear, that's what 18.06 is about. And A should be what size, what shape of matrix 
should that be? I want V to have three components, because this is what the inputs 
have -- so here's the input in R^3, and here's the output in R^2. 

So what shape of matrix? So this should be, I guess, a two by three matrix? Right? A 
two by three matrix. A two by three matrix, we'll multiply a vector in R^3 -- you see 
I'm moving to coordinates so quickly, I'm not a true physicist here. A two by three 
matrix, we'll multiply a vector in R^3 an produce an output in R^2, and it will be a 
linear transformation, and OK. 

So there's a whole lot of examples, every two by three matrix give me an example, 
and basically, I want to show you that there are no other examples. 

Every linear transformation is associated with a matrix. 

Now, let me come back to the idea of linear transformation. 

Suppose I've got this linear transformation in my mind, and I want to tell you what it 
is. 

Suppose I tell you what the transformation does to one vector. OK. 

You know one thing, then. All right. So this is like the -- what I'm speaking about 
now is, how much information is needed to know the transformation? By knowing T, 
I -- to know T of v for all v. All inputs. 

How much information do I have to give you so that you know what the 
transformation does to every vector? OK, I could tell you what the transformation --
so I could take a vector v1, one particular vector, tell you what the transformation 
does to it -- fine. But now you only know what the transformation does to one 
vector. 

So you say, OK, that's not enough, tell me what it does to another vector. 

So I say, OK, give me a vector, you give me a vector v2, and we see, what does the 
transformation do to v2? Now, you only know -- or do you only know what the 



transformation does to two vectors? Have I got to ask you -- answer you about 
every vector in the whole input space, or can you, knowing what it does to v1 and 
v2, how much do you now know about the transformation? You know what the 
transformation does to a larger bunch of vectors than just these two, because you 
know what it does to every linear combination. You know what it does, now, to the 
whole plane of vectors, with bases v1 and v2. I'm assuming v1 and v2 were 
independent. If they were dependent, if v2 was six times v1, then I didn't give you 
any new information in T of v2, you already knew it would be six times T of v1. So 
you can see what I'd headed for. If I know what the transformation does to every 
vector in a basis, then I know everything. So the information needed to know T of v 
for all inputs is T of v1, T of v2, up to T of vm, let's say, or vn, for any basis -- for a 
basis v1 up to vn. This is a base for any -- can I call it an input basis? It's a basis for 
the space of inputs. 

The things that T is acting on. You see this point, that if I have a basis for the input 
space, and I tell you what the transformation does to every one of those basis 
vectors, that is all I'm allowed to tell you, and it's enough to know T of v for all v-s, 
because why? Because every v is some combination of these basis vectors, 
c1v1+...+cnvn, that's what a basis is, right? It spans the space. 

And if I know what T does to this, and what T does to v2, and what T does to vn, 
then I know what T does to V. 

By this linearity, it has to be c1 T of v1 plus O one plus cn T of vn. There's no choice. 

So, the point of this comment is that if I know what T does to a basis, to each vector 
in a basis, then I know the linear transformation. The property of linearity tells me all 
the other vectors. All the other outputs. 

OK. So now, we got -- so that light we now see, what do we really need in a linear 
transformation, and we're ready to go to a matrix. 

OK. What's the step now that takes us from a linear transformation that's free of 
coordinates to a matrix that's been created with respect to coordinates? The matrix 
is going to come from the coordinate system. 

These are the coordinates. Coordinates mean a basis is decided. Once you decide on 
a basis -- this is where coordinates come from. 

You decide on a basis, then every vector, these are the coordinates in that basis. 
There is one and only one way to express v as a combination of the basis vectors, 
and the numbers you need in that combination are the coordinates. 

Let me write that down. So what are coordinates? Coordinates come from a basis. 
Coordinates come from a basis. 

The coordinates of v, the coordinates of v are these numbers that tell you how much 
of each basis vector is in v. 

If I change the basis, I change the coordinates, right? Now, we have always been 
assuming that were working with a standard basis, right? The basis we don't even 
think about this stuff, because if I give you the vector v equals three two four, you 
have been assuming completely -- and probably rightly -- that I had in mind the 



standard basis, that this vector was three times the first coordinate vector, and two 
times the second, and four times the third. 

But you're not entitled -- I might have had some other basis in mind. This is like the 
standard basis. And then the coordinates are sitting right there in the vector. 

But I could have chosen a different basis, like I might have had eigenvectors of a 
matrix, and I might have said, OK, that's a great basis, I'll use the eigenvectors of 
this matrix as my basis vectors. 

Which are not necessarily these three, but some other basis. 

So that was an example, this is the real thing, the coordinates are these numbers, 
I'll circle them again, the amounts of each basis. OK. 

So, if I want to create a matrix that describes a linear transformation, now I'm ready 
to do that. OK, OK. So now what I plan to do is construct the matrix A that 
represents, or tells me about, a linear transformation, linear transformation T. 

OK. So I really start with the transformation -- whether it's a projection or a rotation, 
or some strange movement of this house in the plane, or some transformation from 
n-dimensional space to -- or m-dimensional space to n-dimensional space. 

n to m, I guess. Usually, we'll have T, we'll somehow transform n-dimensional space 
to m-dimensional space, and the whole point is that if I have a basis for n-
dimensional space -- I guess I need two bases, really. I need an input basis to 
describe the inputs, and I need an output basis to give me coordinates -- to give me 
some numbers for the output. 

So I've got to choose two bases. 

Choose a basis v1 up to vn for the inputs, for the inputs in -- they came from R^n. 
So the transformation is taking every n-dimensional vector into some m-dimensional 
vector. 

And I have to choose a basis, and I'll call them w1 up to wn, for the outputs. Those 
are guys in R^m. 

Once I've chosen the basis, that settles the matrix -- I now working with 
coordinates. Every vector in R^n, every input vector has some coordinates. 

So here's what I do, here's what I do. 

Can I say it in words? I take a vector v. 

I express it in its basis, in the basis, so I get its coordinates. Then I'm going to 
multiply those coordinates by the right matrix A, and that will give me the 
coordinates of the output in the output basis. 

I'd better write that down, that was a mouthful. 



What I want -- I want a matrix A that does what the linear transformation does. And 
it does it with respecting these bases. So I want the matrix to be -- well, let's 
suppose -- look, let me take an example. Let me take the projection example. 

The projection example. Suppose I take -- because we've got that -- we've got that 
projection in mind -- I can fit in here. Here's the projection example. 

So the projection example, I'm thinking of n and m as two. 

The transformation takes the plane, takes every vector in the plane, and, let me 
draw the plane, just so we remember it's a plane -- and there's the thing that I'm 
projecting onto, that's the line I'm projecting onto -- so the transformation takes 
every vector in the plane and projects it onto that line. So this is projection, so I'm 
going to do projection. 

OK. But, I'm going to choose a basis that I like better than the standard basis. My 
basis -- in fact, I'll choose the same basis for inputs and for outputs, and the basis 
will be -- my first basis vector will be right on the line. 

There's my first basis vector. Say, a unit vector, on the line. And my second basis 
vector will be a unit vector perpendicular to that line. 

And I'm going to choose that as the output basis, also. And I'm going to ask you, 
what's the matrix? What's the matrix? How do I describe this transformation of 
projection with respect to this basis? OK? So what's the rule? I take any vector v, it's 
some combination of the first basis ve- vector, and the second basis vector. Now, 
what is T of v? Suppose the input is -- well, suppose the input is v1. 

What's the output? v1, right? The projection leaves this one alone. 

So we know what the projection does to this first basis vector, this guy, it leaves it. 
What does the projection do to the second basis vector? It kills it, sends it to zero. 
So what does the projection do to a combination? It kills this part, and this part, it 
leaves alone. 

Now, all I want to do is find the matrix. 

I now want to find the matrix that takes an input, c1 c2, the coordinates, and gives 
me the output, c1 0. You see that in this basis, the coordinates of the input were c1, 
c2, and the coordinates of the output are c1, 0. 

And of course, not hard to find a matrix that will do that. The matrix that will do that 
is the matrix one, zero, zero, zero. 

Because if I multiply input by that matrix A -- this is A times input coordinates -- and 
I'm hoping to get the output coordinates. And what do I get from that multiplication? 
I get the right answer, c1 and zero. So what's the point? So the first point is, there's 
a matrix that does the job. If there's a linear transformation out there, coordinate-
free, no coordinates, and then I choose a basis for the inputs, and I choose a basis 
for the outputs, then there's a matrix that does the job. 

And what's the job? It multiplies the input coordinates and produces the output 
coordinates. 



Now, in this example -- let me repeat, I chose the input basis was the same as the 
output basis. 

The input basis and output basis were both along the line, and perpendicular to the 
line. They're actually the eigenvectors of the projection. And, as a result, the matrix 
came out diagonal. In fact, it came out to be lambda. This is like, the good basis. So 
the good -- the eigenvector basis is the good basis, it leads to the matrix -- the 
diagonal matrix of eigenvalues lambda, and just as in this example, the eigenvectors 
and eigenvalues of this linear transformation were along the line, and perpendicular. 
The eigenvalues were one and zero, and that's the matrix that we got. 

OK. So that's a, like, the great choice of matrix, that's the choice a physicist would 
do when he had to finally -- he or she had to finally bring coordinates in unwillingly, 
the coordinates to be chosen, the good coordinates are the eigenvectors, because, if 
I did this projection in the standard basis -- which I could do, right? I could do the 
whole thing in the standard basis -- I better try, if I can do that. What are we calling 
-- so I'll have to tell you now which line we're projecting on. 

Say, the 45 degree line. So say we're projecting onto 45 degree line, and we use not 
the eigenvector basis, but the standard basis. The standard basis, v1, is one, zero, 
and v2 is zero, one. And again, I'll use the same basis for the outputs. Then I have 
to do this -- I can find a matrix, it will be the matrix that we would always think of, it 
would be the projection matrix. It will be, actually, it's the matrix that we learned 
about in chapter four, it's what I call the matrix -- do you remember, P was A, A 
transpose over A transpose A? And I think, in this example, it will come out, one-
half, one-half, one-half, one-half. I believe that's the matrix that comes from our 
formula. And that's the matrix that will do the job. If I give you this input, one, zero, 
what's the output? The output is one-half, one-half. And that should be the right 
projection. And if I give you the input zero, one, the output is, again, one-half, one-
half, again the projection. So that's the matrix, but not diagonal of course, because 
we didn't choose a great basis, we just chose the handiest basis. 

Well, so the course has practically been about the handiest basis, and just dealing 
with the matrix that we got. And it's not that bad a matrix, it's symmetric, and it has 
this P squared equal P property, all those things are good. 

But in the best basis, it's easy to see that P squared equals P, and it's symmetric, 
and it's diagonal. 

So that's the idea then, is, do you see now how I'm associating a matrix to the 
transformation? I'd better write the rule down, I'd better write the rule down. 

The rule to find the matrix A. All right, first column. 

So, a rule to find A, we're given the bases. 

Of course, we don't -- because there's no way we could construct the matrix until 
we're told what the bases are. 

So we're given the input basis, and the output basis, v1 to vn, w1 to wm. Those are 
given. 



Now, in the first column of A, how do I find that column? The first column of the 
matrix. So that should tell me what happens to the first basis vector. 

So the rule is, apply the linear transformation to v1. To the first basis vector. 

And then, I'll write it -- so that's the output, right? The input is v1, what's the 
output? The output is in the output space, it's some combination of these guys, and 
it's that combination that goes into the first column -- so, let me -- I'll put this word 
-- right, I'll say it in words again. How to find this matrix. Take the first basis vector. 
Apply the transformation, then it's in the output space, T of v1, so it's some 
combination of these outputs, this output basis. 

So that combination, the coefficients in that combination will be the first column -- so 
a1, a row 2, column 1, w2, am1, wm. 

There are the numbers in the first column of the matrix. 

Let me make the point by doing the second column. 

Second column of A. What's the idea, now? I take the second basis vector, I apply 
the transformation to it, that's in -- now I get an output, so it's some combination in 
the output basis -- and that combination is the bunch of numbers that should go in 
the second column of the matrix. 

OK. And so forth. 

So I get a matrix, and the matrix I get does the right job. Now, the matrix 
constructed that way, and following the rules of matrix multiplication. 

The result will be that if I give you the input coordinates, and I multiply by the 
matrix, so the outcome of all this is A times the input coordinates correctly 
reproduces the output coordinates. Why is this right? Let me just check the first 
column. 

Suppose the input coordinates are one and all zeros. 

What does that mean? What's the input? If the input coordinates are one and other -
- and the rest zeros, then the input is v1, right? That's the vector that has 
coordinates one and all zeros. 

OK? When I multiply A by the one and all zeros, I'll get the first column of A, I'll get 
these numbers. And, sure enough, those are the output coordinates for T of v1. So 
we made it right on the first column, we made it right on the second column, we 
made it right on all the basis vectors, and then it has to be right on every vector. 
OK. 

So there is a picture of the matrix for a linear transformation. Finally, let me give you 
another -- a different linear transformation. 

The linear transformation that takes the derivative. 

That's a linear transformation. Suppose the input space is all combination c1 plus c2x 
plus c3 x squared. 



So the basis is these simple functions. 

Then what's the output? Is the derivative. 

The output is the derivative, so the output is c2+2c3 x. 

And let's take as output basis, the vectors one and x. 

So we're going from a three-dimensional space of inputs to a two-dimensional space 
of outputs by the derivative. And I don't know if you ever thought that the derivative 
is linear. 

But if it weren't linear, taking derivatives would take forever, right? We are able to 
compute derivatives of functions exactly because we know it's a linear 
transformation, so that if we learn the derivatives of a few functions, like sine x and 
cos x and e to the x, and another little short list, then we can take all their 
combinations and we can do all the derivatives. 

OK, now what's the matrix? What's the matrix? So I want the matrix to multiply 
these input vectors -- input coordinates, and give these output coordinates. So I just 
think, OK, what's the matrix that does it? I can follow my rule of construction, or I 
can see what the matrix is. 

It should be a two by three matrix, right? And the matrix -- so I'm just figuring out, 
what do I want? No, I'll -- let me write it here. What do I want from my matrix? 
What should that matrix do? Well, I want to get c2 in the first output, so zero, one, 
zero will do it. I want to get two c3, so zero, zero, two will do it. That's the matrix for 
this linear transformation with those bases and those coordinates. You see, it just 
clicks, and the whole point is that the inverse matrix gives the inverse to the linear 
transformation, that the product of two matrices gives the right matrix for the 
product of two transformations -- matrix multiplication really came from linear 
transformations. 

I'd better pick up on that theme Monday after Thanksgiving. 

And I hope you have a great holiday. 

I hope Indian summer keeps going. 

OK, see you on Monday. 
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