Exercises on properties of determinants

Problem 18.1: (5.1 #10. Introduction to Linear Algebra: Strang) If the en-
tries in every row of a square matrix A add to zero, solve Ax = 0 to prove
that det A = 0. If those entries add to one, show that det(A — I) = 0. Does
this mean that det A = 1?

Solution:  If the entries of every row of A sum to zero, then Ax = 0
when x = (1,...,1) since each component of Ax is the sum of the entries
in a row of A. Since A has a non-zero nullspace, it is not invertible and
det A = 0.

If the entries of every row of A sum to one, then the entries in every
row of A — I sum to zero. Hence A — I has a non-zero nullspace and
det(A—1I) =0.

If det(A — I) = 0 it is not necessarily true that det A = 1. For example,

the rows of A = { (1) (1) } sum to one butdet A = —1.

Problem 18.2: (5.1 #18.) Use row operations and the properties of the
determinant to calculate the three by three “Vandermonde determinant”:
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b* | = (b—a)(c—a)(c—b).
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Solution:  Using row operations and properties of the determinant, we
have:
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=(b—a)(c—a)(c—b).v
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