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  Orthogonal matrices and Gram-Schmidt 

In this lecture we finish introducing orthogonality. Using an orthonormal ba­
sis or a matrix with orthonormal columns makes calculations much easier. The 
Gram-Schmidt process starts with any basis and produces an orthonormal ba­
sis that spans the same space as the original basis. 

Orthonormal vectors 

The vectors q1, q2, ...qn are orthonormal if: 

qi
T qj =	

0 if i �= j 
1 if i = j. 

In other words, they all have (normal) length 1 and are perpendicular (ortho) 
to each other. Orthonormal vectors are always independent. 

Orthonormal matrix 

If the columns of Q = q1 ... qn are orthonormal, then QTQ = I is the 
identity. 

Matrices with orthonormal columns are a new class of important matri­
ces to add to those on our list: triangular, diagonal, permutation, symmetric, 
reduced row echelon, and projection matrices. We’ll call them “orthonormal 
matrices”. 

A square orthonormal matrix Q is called an orthogonal matrix. If Q is square, 
then QTQ = I tells us that QT = Q−1. 

0 0 1 0 1 0 
For example, if Q = 1 0 0 then QT = 0 0 1 . Both Q and QT 

0 1 0 1 0 0 
are orthogonal matrices, and their product is the identity. 

not, but we can adjust that matrix to get the orthogonal matrix Q = 1

� � � � 

The matrix Q = cos θ 
sin θ 

− sin θ 
cos θ 

is orthogonal. The matrix 1 1 
1 −1� 

is 

1 1 √
2 1 −1 

We can use the same tactic to find some larger orthogonal matrices called 
Hadamard matrices: ⎡ ⎤ 

1 1 1 1 

Q = 
1 ⎢⎢ 1 −1 1 −1 ⎦⎥⎥ .
2 ⎣ 1 1 −1 −1 

1 −1 −1 1 

An example of a rectangular matrix with orthonormal columns is: ⎡	 ⎤ 
1 1 −2 

Q = 
3 
⎣ 2 −1 ⎦ . 

2 2 

1 

. 



We can extend this to a (square) orthogonal matrix: ⎡ ⎤ 
1 
3 
⎣ 

1 
2 
2 

−2 
−1 

2 

2 
−2 

1 
⎦ . 

These examples are particularly nice because they don’t include compli­
cated square roots. 

Orthonormal columns are good 

Suppose Q has orthonormal columns. The matrix that projects onto the column 
space of Q is: 

P = QT (QTQ)−1QT . 

If the columns of Q are orthonormal, then QTQ = I and P = QQT . If Q is 
square, then P = I because the columns of Q span the entire space. 

Many equations become trivial when using a matrix with orthonormal columns. 
If our basis is orthonormal, the projection component x̂i is just qi

T b because 
AT Ax̂ = AT b becomes x̂ = QTb. 

Gram-Schmidt 

With elimination, our goal was “make the matrix triangular”. Now our goal is 
“make the matrix orthonormal”. 

We start with two independent vectors a and b and want to find orthonor­
mal vectors q1 and q2 that span the same plane. We start by finding orthogonal 
vectors A and B that span the same space as a and b. Then the unit vectors 
q1 = A and q2 = B form the desired orthonormal basis. ||A|| ||B||

Let A = a. We get a vector orthogonal to A in the space spanned by a and 
b by projecting b onto a and letting B = b − p. (B is what we previously called 
e.) 

ATb
B = b − 

ATA
A. 

If we multiply both sides of this equation by AT , we see that ATB = 0. 
What if we had started with three independent vectors, a, b and c? Then 

we’d find a vector C orthogonal to both A and B by subtracting from c its 
components in the A and B directions: 

ATc BTc
C = c − 

ATA
A − 

BTB
B. 
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1 1

For example, suppose a = 1 and b = 0 . Then A = a and:


1 2
⎡ ⎤ ⎡ ⎤ 
1 AT b 1 

B = ⎣ 0 ⎦ ⎣ 1 ⎦− 
AT A2 1 ⎡ ⎤ ⎡ ⎤ 

1 13 
= ⎣ 0 ⎦ ⎣ 1 ⎦− 

32 1 ⎡ ⎤ 
0 

= ⎣ −1 ⎦ . 
1 

Normalizing, we get: ⎡ ⎤ 
1/

√
3 0 

Q = 
� 

q1 q2 
� 
= 1/

√
3 −1/

√
2⎣ ⎦ . 

1/
√

3 1/
√

2 

The column space of Q is the plane spanned by a and b. 

When we studied elimination, we wrote the process in terms of matrices 
and found A = LU. A similar equation A = QR relates our starting matrix A 
to the result Q of the Gram-Schmidt process. Where L was lower triangular, R 
is upper triangular. 

Suppose A = a1 a2 . Then: 

A Q � R � � � � � a1 
T q1 a2 

Tq1 . 
=a1 a2 q1 q2 a1 

T q2 a2 
Tq2 

If R is upper triangular, then it should be true that a1 
Tq2 = 0. This must be true 

because we chose q1 to be a unit vector in the direction of a1. All the later qi 
were chosen to be perpendicular to the earlier ones. 

Notice that R = QT A. This makes sense; QTQ = I. 

3 



MIT OpenCourseWare 
http://ocw.mit.edu 

18.06SC Linear Algebra 
Fall 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

