
� � 

  Markov matrices; Fourier series 

In this lecture we look at Markov matrices and Fourier series – two applications 
of eigenvalues and projections. 

Eigenvalues of AT 

The eigenvalues of A and the eigenvalues of AT are the same: 

(A − λI)T = AT − λI, 

so property 10 of determinants tells us that det(A − λI) = det(AT − λI). If λ 
is an eigenvalue of A then det(AT − λI) = 0 and λ is also an eigenvalue of AT . 

Markov matrices 

A matrix like: ⎡ ⎤ 
.1 .01 .3 

A = ⎣ .2 .99 .3 ⎦ 

.7 0 .4 

in which all entries are non-negative and each column adds to 1 is called a 
Markov matrix. These requirements come from Markov matrices’ use in proba­
bility. Squaring or raising a Markov matrix to a power gives us another Markov 
matrix. 

When dealing with systems of differential equations, eigenvectors with the 
eigenvalue 0 represented steady states. Here we’re dealing with powers of 
matrices and get a steady state when λ = 1 is an eigenvalue. 

The constraint that the columns add to 1 guarantees that 1 is an eigenvalue. 
All other eigenvalues will be less than 1. Remember that (if A has n indepen­
dent eigenvectors) the solution to uk = Aku0 is uk = c1λ1

kx1 + c2λ2
k x2 + +· · · 

cnλk
nxn. If λ1 = 1 and all others eigenvalues are less than one the system ap­

proaches the steady state c1x1. This is the x1 component of u0. 
Why does the fact that the columns sum to 1 guarantee that 1 is an eigen­

value? If 1 is an eigenvalue of A, then: ⎡ ⎤ ⎣ 
−.9 .01 .3 

A − 1I = .2 −.01 .3 ⎦ 

.7 0 −.6 

should be singular. Since we’ve subtracted 1 from each diagonal entry, the sum 
of the entries in each column of A − I is zero. But then the sum of the rows of 
A − I must be the zero row, and so A − I is singular. The eigenvector x1 is in the 

.6 
nullspace of A − I and has eigenvalue 1. It’s not very hard to find x1 = 33 . 

.7 
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We’re studying the equation uk+1 = Auk where A is a Markov matrix. For 
example u1 might be the population of (number of people in) Massachusetts 
and u2 might be the population of California. A might describe what fraction 
of the population moves from state to state, or the probability of a single person 
moving. We can’t have negative numbers of people, so the entries of A will 
always be positive. We want to account for all the people in our model, so the 
columns of A add to 1 = 100%. 

For example: � � � � � � 
uCal .9 .2 uCal = uMass t=k+1 .1 .8 uMass t=k 

assumes that there’s a 90% chance that a person in California will stay in Cal­
ifornia and only a 10% chance that she or he will move, while there’s a 20% 
percent chance that a Massachusetts resident will move to California. If our 

uCal 0initial conditions are uMass 
= 1000 , then after one move u1 = Au0 is: 

0 � � � � � � � � 
uCal .9 .2 0 200 

uMass 1 
= .1 .8 1000 = 800 . 

For the next few values of k, the Massachusetts population will decrease and 
the California population will increase while the total population remains con­
stant at 1000. 

To understand the long term behavior of this system we’ll need the eigen­
.9 .2vectors and eigenvalues of .1 .8 . We know that one eigenvalue is λ1 = 1. 

Because the trace .9 + .8 = 1.7 is the sum of the eigenvalues, we see that λ2 = .7. 
Next we calculate the eigenvectors: 

A − λ1 I = 
−.1 .2 x1 = 0,.1 −.2 

2so we choose x1 = . The eigenvalue 1 corresponds to the steady state 1 
solution, and λ2 = .7 < 1, so the system approaches a limit in which 2/3 of 
1000 people live in California and 1/3 of 1000 people are in Massachusetts. 
This will be the limit from any starting vector u0. 

To know how the population is distributed after a finite number of steps we 
look for an eigenvector corresponding to λ2 = .7: 

.2 .2A − λ2 I = .1 .1 x1 = 0, 

1so let x2 = . −1 
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From what we learned about difference equations we know that: 

uk = c11k 2 
+ c2(.7)k −1 .1 1 

When k = 0 we have: 

0 2 −1 u0 = = c1 + c2 ,1000 1 1 

1000 2000so c1 = 3 and c2 = 3 . 
In some applications Markov matrices are defined differently – their rows 

add to 1 rather than their columns. In this case, the calculations are the trans­
pose of everything we’ve done here. 

Fourier series and projections 

Expansion with an orthonormal basis 

If we have an orthonormal basis q1, q2, ..., qn then we can write any vector v as 
v = x1q1 + x2q2 + + xnqn, where: · · · 

T T T Tqi v = x1qi q1 + x2qi q2 + + xnqi qn = xi.· · · 

Since qi
T qj = 0 unless i = j, this equation gives xi = qi

Tv.⎡ ⎤ 
x1� � ⎢ . ⎥In terms of matrices, q1 qn ⎣ .. ⎦ = v, or Qx = v. So x = · · · 
xn 

Q−1v. Because the qi form an orthonormal basis, Q−1 = QT and x = QTv. 
This is another way to see that xi = qi

Tv. 

Fourier series 

The key idea above was that the basis of vectors qi was orthonormal. Fourier 
series are built on this idea. We can describe a function f (x) in terms of trigono­
metric functions: 

f (x) = a0 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x + .· · · 

This Fourier series is an infinite sum and the previous example was finite, but 
the two are related by the fact that the cosines and sines in the Fourier series 
are orthogonal. 

We’re now working in an infinite dimensional vector space. The vectors in 
this space are functions and the (orthogonal) basis vectors are 1, cos x, sin x, 
cos 2x, sin 2x, ... 
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What does “orthogonal” mean in this context? How do we compute a dot 
product or inner product in this vector space? For vectors in Rn the inner prod­
uct is vTw = v1w1 + v2w2 + + vnwn. Functions are described by a contin­· · · 
uum of values f (x) rather than by a discrete collection of components vi. The 
best parallel to the vector dot product is: � 2π 

f T g = f (x)g(x) dx. 
0 

We integrate from 0 to 2π because Fourier series are periodic: 

f (x) = f (x + 2π). 

The inner product of two basis vectors is zero, as desired. For example, 

� 2π 2π 

sin x cos x dx = 
1 
(sin x)2 = 0.

20 0 

How do we find a0, a1, etc. to find the coordinates or Fourier coefficients 
of a function in this space? The constant term a0 is the average value of the 
function. Because we’re working with an orthonormal basis, we can use the 
inner product to find the coefficients ai. � 2π � 2π 

f (x) cos x dx = (a0 + a1 cos x + b1 sin x + a2 cos 2x + ) cos x dx 
0 0 

· · ·
� 2π

= 0 + a1 cos2 x dx + 0 + 0 +


0 
· · · 

= a1π. 

1 � 2π 
We conclude that a1 = f (x) cos x dx. We can use the same technique to 

π 0 
find any of the values ai. 
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