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Exercises on Markov matrices; Fourier series 

Problem 24.1: (6.4 #7. Introduction to Linear Algebra: Strang) 

1 ba) Find a symmetric matrix that has a negative eigenvalue. b 1 

b) How do you know it must have a negative pivot? 

c) How do you know it can’t have two negative eigenvalues? 

Problem 24.2: (6.4 #23.) Which of these classes of matrices do A and B 
belong to: invertible, orthogonal, projection, permutation, diagonalizable, 
Markov? ⎡ ⎤ ⎡ ⎤ 
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⎦ . 

Which of these factorizations are possible for A and B: LU, QR, SΛS−1, or 
QΛQT? 
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Problem 24.3: (8.3 #11.) Complete A to a Markov matrix and find the

steady state eigenvector. When A is a symmetric Markov matrix, why is

x1 = (1, . . . , 1) its steady state? ⎡ 

.7 .1 .2 
⎤ 

A = ⎣ .1 .6 .3 ⎦ . 
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