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  Differential equations and eAt 

The system of equations below describes how the values of variables u1 and u2 
affect each other over time: 

du1 

dt 
= −u1 + 2u2 

du2 

dt 
= u1 − 2u2. 

Just as we applied linear algebra to solve a difference equation, we can use it 
to solve this differential equation. For example, the initial condition u1 = 1, 

1 u2 = 0 can be written u(0) = 0 . 

Differential equations d
dt 
u = Au 

By looking at the equations above, we might guess that over time u1 will de­
crease. We can get the same sort of information more safely by looking at the 

eigenvalues of the matrix A = −
1
1 

−2
2 of our system 

d
dt 
u 
= Au. Because 

A is singular and its trace is −3 we know that its eigenvalues are λ1 = 0 and 
λ2 = −3. The solution will turn out to include e−3t and e0t . As t increases, 
e−3t vanishes and e0t = 1 remains constant. Eigenvalues equal to zero have 
eigenvectors that are steady state solutions. 

2 x1 = is an eigenvector for which Ax1 = 0x1. To find an eigenvector 1 
corresponding to λ2 = −3 we solve (A − λ2 I)x2 = 0: 

2 2 1 x2 = 0 so x2 = 1 1 −1 

and we can check that Ax2 = −3x2. The general solution to this system of 
differential equations will be: 

u(t) = c1eλ1tx1 + c2eλ2tx2. 

Is eλ1tx1 really a solution to d
dt 
u = Au? To find out, plug in u = eλ1tx1: 

du 
= λ1eλ1tx1,

dt 

which agrees with: 
Au = eλ1t Ax1 = λ1eλ1tx1. 

The two “pure” terms eλ1tx1 and eλ2tx2 are analogous to the terms λk
i xi we 

saw in the solution c1λ1
k x1 + c2λ2

k x2 + + cnλn
k xn to the difference equation · · · 

uk+1 = Auk. 
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Plugging in the values of the eigenvectors, we get: 

u(t) = c1eλ1tx1 + c2eλ2tx2 = c1 1
2 

+ c2e−3t 
−1

1 . 

1We know u(0) = 0 , so at t = 0: 

1 2 1 
0 = c1 1 + c2 −1 . 

c1 = c2 = 1/3 and u(t) = 3
1 

1
2 

+ 3
1 e−3t 

−1
1 . 

This tells us that the system starts with u1 = 1 and u2 = 0 but that as 
t approaches infinity, u1 decays to 2/3 and u2 increases to 1/3. This might 
describe stuff moving from u1 to u2. � � 

2/3 The steady state of this system is u(∞) = 1/3 . 

Stability 

Not all systems have a steady state. The eigenvalues of A will tell us what sort 
of solutions to expect: 

1. Stability: u(t) 0 when Re(λ) < 0.→ 

2. Steady state: One eigenvalue is 0 and all other eigenvalues have negative 
real part. 

3. Blow up: if Re(λ) > 0 for any eigenvalue λ. 

If a two by two matrix A = a b has two eigenvalues with negative c d 

real part, its trace a + d is negative. The converse is not true: −2 0 has0 1 

negative trace but one of its eigenvalues is 1 and e1t blows up. If A has a 
positive determinant and negative trace then the corresponding solutions must 
be stable. 

Applying S 

The final step of our solution to the system d
dt 
u = Au was to solve: � � � � � � 

2 1 1 c1 1 + c2 −1 = 0 . 

In matrix form: � � � � � � 
2 
1 

1 
−1 

c1 
c2 

= 
1 
0 . 
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or Sc = u(0), where S is the eigenvector matrix. The components of c deter­
mine the contribution from each pure exponential solution, based on the initial 
conditions of the system. 

In the equation d
dt 
u = Au, the matrix A couples the pure solutions. We set 

u = Sv, where S is the matrix of eigenvectors of A, to get: 

dv
S = ASv

dt 
or: 

dv 
= S−1 ASv = Λv.

dt 

This diagonalizes the system: dvi = λivi. The general solution is then: dt 

v(t) = eΛtv(0), and 

u(t) = SeΛtS−1v(0) = eAtu(0). 

Matrix exponential eAt 

What does eAt mean if A is a matrix? We know that for a real number x, 
∞ xn x2 x3


ex = ∑ = 1 + x + + + .

n! 2 6 

· · · 
n=0 

We can use the same formula to define eAt: 

(At)2 (At)3 
eAt = I + At + + + .

2 6 
· · · 

Similarly, if the eigenvalues of At are small, we can use the geometric series 
1 ∞ 

1 − x 
= ∑ xn to estimate (I − At)−1 = I + At + (At)2 + (At)3 + · · · . 

n=0 

We’ve said that eAt = SeΛtS−1. If A has n independent eigenvectors we can 
prove this from the definition of eAt by using the formula A = SΛS−1: 

(At)2 (At)3 
eAt = I + At + + +

2 6 
· · · 

= SS−1 + SΛS−1t + 
SΛ2S−1 

t2 + 
SΛ3S−1 

t3 +
2 6 

· · · 

= SeΛtS−1. 

It’s impractical to add up infinitely many matrices. Fortunately, there is an 
easier way to compute eΛt. Remember that: ⎤⎡ 

Λ = 
⎢⎢⎢⎣ 

λ1 0 0· · · 
0 λ2 0 
. . . 

. . . 
. . . 

0 · · · 0 λn 
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When we plug this in to our formula for eAt we find that: ⎡ ⎤ 
eλ1t 0 · · · 0 

0 eλ2t 0 
. . . 

. . . 
. . . 

0 · · · 0 eλn t 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
Λte = . 

This is another way to see the relationship between the stability of u(t) = 
SeΛtS−1v(0) and the eigenvalues of A. 

Second order 

We can change the second order equation y�� + by� + ky = 0 into a two by two 
first order system using a method similar to the one we used to find a formula 

for the Fibonacci numbers. If u = y� , then y � � 

u� = y
y

�
�
� 

= −
1 
b −

0 
k y

y 

� 
. 

We could use the methods we just learned to solve this system, and that would 
give us a solution to the second order scalar equation we started with. 

If we start with a kth order equation we get a k by k matrix with coefficients 
of the equation in the first row and 1’s on a diagonal below that; the rest of the 
entries are 0. 
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