Exercises on Cramer's rule, inverse matrix, and volume

Problem 20.1: (5.3 #8. *Introduction to Linear Algebra:* Strang) Suppose

$$A = \left[\begin{array}{rrr} 1 & 1 & 4 \\ 1 & 2 & 2 \\ 1 & 2 & 5 \end{array} \right].$$

Find its cofactor matrix C and multiply AC^T to find det(A).

$$C = \begin{bmatrix} 6 & -3 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \text{ and } AC^T = \underline{\qquad}.$$

If you change $a_{1,3} = 4$ to 100, why is det(A) unchanged?

Solution: We fill in the cofactor matrix C and then multiply to obtain AC^T :

$$C = \left[\begin{array}{rrr} 6 & -3 & 0 \\ 3 & 1 & -1 \\ -6 & 2 & 1 \end{array} \right]$$

and

$$AC^{T} = \begin{bmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix} \begin{bmatrix} 6 & 3 & -6 \\ -3 & 1 & 2 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = 3I.$$

Since $AC^T = \det(A)I$, we have $\det(A) = 3$. If 4 is changed to 100, $\det(A)$ is unchanged because the cofactor of that entry is 0, and thus its value does not contribute to the determinant.

Problem 20.2: (5.3 #28.) Spherical coordinates ρ , ϕ , θ satisfy

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$ and $z = \rho \cos \phi$.

Find the three by three matrix of partial derivatives:

$$\begin{bmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta} \end{bmatrix}.$$

Simplify its determinant to $J = \rho^2 \sin \phi$. In spherical coordinates,

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

is the volume of an infinitesimal "coordinate box."

Solution: The rows are formed by the partials of x, y, and z with respect to ρ , ϕ , and θ :

$$\begin{bmatrix} \sin \phi \cos \theta & \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\ \cos \phi & -\rho \sin \phi & 0 \end{bmatrix}.$$

Expanding its determinant *J* along the bottom row, we get:

$$J = \cos \phi \begin{bmatrix} \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \end{bmatrix}$$

$$-(-\rho \sin \phi) \begin{bmatrix} \sin \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \sin \phi \cos \theta \end{bmatrix} + 0$$

$$= \cos \phi (\rho^2 \cos \phi \sin \phi \cos^2 \theta + \rho^2 \cos \phi \sin \phi \sin^2 \theta)$$

$$+\rho \sin \phi (\rho \sin^2 \phi \cos^2 \theta + \rho \sin^2 \phi \sin^2 \theta)$$

$$= \cos \phi (\rho^2 \cos \phi \sin \phi (\cos^2 \theta + \sin^2 \theta)) + \rho \sin \phi (\rho \sin^2 \phi (\cos^2 \theta + \sin^2 \theta))$$

$$= \cos \phi (\rho^2 \cos \phi \sin \phi) + \rho^2 \sin^3 \phi$$

$$= \cos \phi (\rho^2 \cos \phi \sin \phi) + \rho^2 \sin^3 \phi$$

$$= \rho^2 \sin \phi (\cos^2 \phi + \sin^2 \phi)$$

$$I = \rho^2 \sin \phi.$$

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.