
18.06 Linear Algebra, Fall 1999 
Transcript – Lecture 20 

OK, this is lecture twenty. And this is the final lecture on determinants. And it's 
about the applications. So we worked hard in the last two lectures to get a formula 
for the determinant and the properties of the determinant. Now to use the 
determinant and, and always this determinant packs all this information into a single 
number. 

And that number can give us formulas for all sorts of, things that we've been 
calculating already without formulas. Now what was A inverse? So, so I'm beginning 
with the formula for A inverse. Two, two by two formula we know, right? The two by 
two formula for A inverse, the inverse of a b c d inverse is one over the determinant 
times d a -b -c. Somehow I want to see what's going on for three by three and n by 
n. 

And actually maybe you can see what's going on from this two by two case. So 
there's a formula for the inverse, and what did I divide by? The determinant. So 
what I'm looking for is a formula where it has one over the determinant and, and 
you remember why that makes good sense, because then that's perfect as long as 
the determinant isn't zero, and that's exactly when there is an inverse. But now I 
have to ask can we recognize any of this stuff? Do you recognize what that number d 
is from the past? From last, from the last lecture? My hint is think cofactors. 

Because my formula is going to be, my formula for the inverse is going to be one 
over the determinant times a matrix of cofactors. So you remember that D? What's 
that the cofactor of? Remember cofactors? If -- that's the one one cofactor, because 
if I strike out row and column one, I'm left with d. 

And what's minus b? OK. 

Which cofactor is that one? Oh, minus b is the cofactor of c, right? If I strike out the 
c, I'm left with a b there. 

And why the minus sign? Because this c was in a two one position, and two plus one 
is odd. 

So there was a minus went into the cofactor, and that's it. OK. 

I'll write down next what my formula is. 

Here's the big formula for the A -- for A inverse. 

It's one over the determinant of A and then some matrix. 

And that matrix is the matrix of cofactors, c. Only one thing, it turns -- you'll see, I 
have to, I transpose. 



So this is the matrix of cofactors, the -- what I'll just -- but why don't we just call it 
the cofactor matrix. So the one one entry of, of c is the cof- is the one one cofactor, 
the thing that we get by throwing away row and column one. 

It's the d. And, because of the transpose, what I see up here is the cofactor of this 
guy down here, right? That's where the transpose came in. What I see here, this is 
the cofactor not of this one, because I've transposed. This is the cofactor of the b. 

When I throw away the b, the b row and the b column, I'm left with c, and then I 
have that minus sign again. And of course the two two entry is the cofactor of d, and 
that's this a. OK. So there's the formula. 

But we got to think why. I mean, it worked in this two by two case, but a lot of other 
formulas would have worked just as well. We, we have to see why that's true. In 
other words, why is it -- so this is what I aim to find. 

And, and let's just sort of look to see what is that telling us. That tells us that the --
the expression for A inverse -- let's look at a three by three. Can I just write down a 
a b c d e f g h i? And I'm looking for its inverse. 

And what kind of a formula -- do I see there? I mean, what -- the determinant is a 
bunch of products of three factors, right? The determinant of this matrix'll involve a e 
i, and b f times g, and c times d times h, and minus c e g, and so on. 

So things with three factors go in here. 

Things with how many factors do things in the cofactor matrix have? What's a typical 
cofactor? What's the cofactor of a? The cofactor of a, the one one entry up here in 
the inverse is? I throw away the row and column containing a and I take the 
determinant of what's left, that's the cofactor. And that's e i minus f h. 

Products of two things. Now, I'm just making the observation that the determinant of 
A involves products of n entries. And the cofactor matrix involves products of n 
minus 1 entries. 

And, like, we never noticed any of this stuff when we were computing the inverse by 
the Gauss-Jordan method or whatever. 

You remember how we did it? We took the matrix A, we tucked the identity next to 
it, we did elimination till A became the identity. And then that, the identity suddenly 
was A inverse. 

Well, that was great numerically. 

But we never knew what was going on, basically. 

And now we see what the formula is in terms of letters, what's the algebra instead of 
the algorithm. OK. 

But I have to say why this is right, right? I still -- that's a pretty magic formula. 

Where does it come from? Well, I'll just check it. 



Having, having got it up there, let me -- I'll say, how can we check -- what do I want 
to check? I want to check that A times its inverse gives the identity. So I want, I 
want to check that A times this thing, A times this -- now I'm going to write in the 
inverse -- gives the identity. 

So I check that A times C transpose -- let me bring the determinant up here. 
Determinant of A times the identity. That's my job. 

That's it, that if this is true, and it is, then, then I've correctly identified A inverse as 
C transpose divided by the determinant. 

OK. But why is this true? Why is that true? Let me, let me put down what I'm doing 
here. I have A -- here, here's A, here's a11 -- I'm doing this multiplication -- along to 
a1n. And then down in this last row will be an an1 along to ann. And I'm multiplying 
by the cofactor matrix transposed. So when I transpose, it'll be c11 c12 down to c1n. 
Notice usually that one coming first would mean I'm in row one, but I've transposed, 
so that's, those are the cofactors. 

This first column are the cofactors from row one. 

And then the last column would be the cofactors from row n. 

And why should that come out to be anything good? In fact, why should it come out 
to be as good as this? Well, you can tell me what the one one entry in the product is. 

This is like you're seeing the main point if you just tell me one entry. What do I get 
up there in the one one entry when I do this row of this row from A times this 
column of cofactors? What, what will I get there? Because we have seen this. 

I mean, we're, right, building exactly on what the last lecture reached. So this is a11 
times c11, a12 times c12, a1n times c1n. What does that what does that sum up to? 
That's the cofactor formula for the determinant. That's the, this cofactor formula, 
which I wrote, which we got last time. The determinant of A is, if I use row one, let, 
let I equal one, then I have a11 times its cofactor, a12 times its cofactor, and so on. 

And that gives me the determinant. 

And it worked in this, in this case. 

This row times this thing is, sure enough, ad minus bc. But this formula says it 
always works. So up here in this, in this position, I'm getting determinant of A. 

What about in the two two position? Row two times column two there, what, what is 
that? That's just the cofactors, that's just row two times its cofactors. So of course I 
get the determinant again. And in the last here, this is the last row times its 
cofactors. It's exactly -- you see, we're realizing that the cofactor formula is just this 
sum of products, so of course we think, hey, we've got a matrix multiplication there. 

And we get determinant of A. Great. 

But there's one more idea here, right? What else, what have I not -- so I haven't got 
that formula completely proved yet, because I've still got to do all the off-diagonal 
stuff, which I want to be zero, right? I just want this to be determinant of A times 



the identity, and then I'm, I'm a happy person. So why should that be? Why should 
it be that one row times the cofactors from a different row, which become a column 
because I transpose, give zero? In other words, the cofactor formula gives the 
determinant if the row and the, and the cofactors -- you know, if the entries of A and 
the cofactors are for the same row. 

But for some reason, if I take the cofactors from the -- entries from the first row and 
the cofactors from the second row, for some reason I automatically get zero. And it's 
sort of like interesting to say, why does that happen? And can I just check that -- of 
course, we know it happens, in this case. Here are the numbers from row one and 
here are the cofactors from row two, right? Those are the numbers in row one. And 
th- these are the cofactors from row two, because the cofactor of c is minus b and 
the cofactor of d is a. 

And sure enough, that row times this column gives -- please say it. Zero, right. 

OK. So now how come? How come? Can we even see it in this two by two case? Why 
did -- well, I mean, I guess we, you know, in one way we certainly do see it, because 
it's right here. 

I mean, do we just do it, and then we get zero. 

But we want to think of some reason why the answer's zero, some reason that we 
can use in the n by n case. 

So let -- here, here is my thinking. 

We must be, if we're getting the answer's zero, we suspect that what we're doing 
somehow, we're taking the determinant of some matrix that has two equal rows. So 
I believe that if we multiply these by the cofactors from some other row, we're 
taking the determinant -- ye, what matrix are we taking the determinant of? Here 
it's, this is it. 

We're, when we do that times this, we're really taking -- can I put this in little letters 
down here? I'm taking -- let me look at the matrix a b a b. Let me call that matrix 
AS, A screwed up. 

OK. All right. 

So now that matrix is certainly singular. 

So if we find its determinant, we're going to get zero. 

But I claim that if we find its determinant by the cofactor rule, go along the first row, 
we would take a times the cofactor of a. 

And what is the -- see, how -- oh no -- let me go along the second row. OK. So let's 
see, which -- if I take -- I know I've got a singular matrix here. And I believe that 
when I do this multiplication, what I'm doing is using the cofactor formula for the 
determinant. 

And I know I'm going to get zero. 



Let me try this again. So the cofactor formula for the determinant says I should take 
a times its cofactor, which is this b, plus b times its cofactor, which is this minus a. 
OK. 

That's what we're doing, apart from a sign here. 

Oh yeah, so you know, there might be a minus multiplying everything. So if I take 
this determinant, it's A -- the determinant of this, the determinant of A screwed up is 
a times its cofactor, which is b, plus the second guy times its cofactor, which is 
minus a. And of course I get the answer zero, and this is exactly what's happening in 
that, in that, row times this wrong column. 

OK. That's the two by two picture, and it's just the same here. That the reason I get 
a zero up in there is, the reason I get a zero is that when I multiply the first row of A 
and the last row of the cofactor matrix, it's as if I'm taking the determinant of this 
screwed up matrix that has first and last rows identical. The book pins this down 
more specific -- and more carefully than I can do in the lecture. 

I hope you're seeing the point. That this is an identity. 

That it's a beautiful identity and it tells us what the inverse of the matrix is. So it
 
gives us the inverse, the formula for the inverse. OK.
 

So that's the first goal of my lecture, was to find this formula. It's done.
 

OK. And of course I could invert, now, I can, I sort of like I can see what -- I can
 
answer questions like this.
 

Suppose I have a matrix, and let me move the one one entry. What happens to the
 
inverse? Just, just think about that question.
 

Suppose I have some matrix, I just write down some nice, non-singular matrix that's
 
got an inverse, and then I move the one one entry a little bit.
 

I add one to it, for example.
 

What happens to the inverse matrix? Well, this formula should tell me.
 

I have to look to see what happens to the determinant and what happens to all the
 
cofactors.
 

And, the picture, it's all there.
 

It's all there. We can really understand how the inverse changes when the matrix
 
changes.
 

OK. Now my second application is to -- let me put that over here -- is to Ax=b.
 

Well, the -- course, the solution is A inverse b.
 

But now I have a formula for A inverse.
 



A inverse is one over the determinant times this C transpose times B. I now know 
what A inverse is. 

So now I just have to say, what have I got here? Is there any way to, to make this 
formula, this answer, which is the one and only answer -- it's the very same answer 
we got on the first day of the class by elimination. Now I'm -- now I've got a formula 
for the answer. Can I play with it further to see what's going on? And Cramer's, this 
Cramer's Rule is exactly, that -- a way of looking at this formula. OK. 

So this is a formula for x. Here's my formula. 

Well, of course. The first thing I see from the formula is that the answer x always 
has that in the determinant. I'm not surprised. 

There's a division by the determinant. 

But then I have to say a little more carefully what's going on up here. And let me tell 
you what Cramer's Rule is. Let, let me take x1, the first component. So this is the 
first component of the answer. Then there'll be a second component and a, all the 
other components. 

Can I take just the first component of this formula? Well, I certainly have 
determinant of A down under. 

And what the heck is the first -- so what do I get in C transpose b? What's the first 
entry of C transpose b? That's what I have to answer myself. Well, what's the first 
entry of C transpose b? OK. 

This B is -- let me tell you what it is. 

Somehow I'm multiplying cofactors by the entries of B, right, in this product. 
Cofactors from the matrix times entries of b. So any time I'm multiplying cofactors 
by numbers, I think, I'm getting the determinant of something. And let me call that 
something B1. So this is a matrix, the matrix whose determinant is coming out of 
that. 

And we'll, we'll see what it is. 

x2 will be the determinant of some other matrix B2, also divided by determinant of 
A. 

So now I just -- Cramer just had a good idea. 

He realized what matrix it was, what these B1 and B2 and B3 and so on matrices 
were. Let me write them on the board underneath. OK. 

So what is this B1? This B1 is the matrix that has b in its first column and otherwise 
the rest of it is A. 

So it otherwise it has the rest, the, the n-1 columns of A. 

It's the matrix with -- it's just the matrix A with column one replaced by the right-
hand side, by the right-hand side b. Because somehow when I take the determinant 



of this guy, it's giving me this matrix multiplication. Well, how could that be? How 
could -- so what's, what's the determinant formula I'll use here? I'll use cofactors, of 
course. And I might as well use cofactors down column one. So when I use cofactors 
down column one, I'm taking the first entry of b times what? Times the cofactor c11. 
Do you see that? When I, when I use cofactors here, I take the first entry here, B 
one let's call it, times the cofactor there. But what's the cofactor in -- my little hand-
waving is meant to indicate that it's a matrix of one size smaller, the cofactor. 

And it's exactly c11. Well, that's just what we wanted. This first entry is c11 times 
b1. And then the next entry is whatever, is c21 times b2, and so on. 

And sure enough, if I look here, when I'm, when I do the cofactor expansion, b2 is 
getting multiplied by the right thing, and so on. 

So there's Cramer's Rule. And the book gives another kind of cute proof without, 
without building so much on, on cofactors. 

But here we've got cofactors, so I thought I'd just give you this proof. So what is B -
- in general, what is Bj? This is the, this is A with column j replaced by, by b. 

So that's -- the determinant of that matrix that you divide by determinant of A to get 
xj. So x -- let me change this general formula. xj, the j-th one, is the determinant of 
Bj divided by the determinant of A. 

And now we've said what Bj is. Well, so Cramer found a rule. 

And we could ask him, OK, great, good work, Cramer. But is your rule any good in 
practice? So he says, well, you couldn't ask about a rule in mine, right, because it's 
just -- all you have to do is find the determinant of A and these other determinants, 
so I guess -- oh, he just says, well, all you have to do is find n+1 determinants, the, 
the n Bs and the A. And actually, I remember reading -- there was a book, popular 
book that, that kids interested in math read when I was a kid interested in math 
called Mathematics for the Million or something, by a guy named Bell. And it had a 
little page about linear algebra. And it said,-- so it explained elimination in a very 
complicated way. I certainly didn't understand it. 

And, and it made it, you know, it sort of said, well, there is this formula for 
elimination, but look at this great formula, Cramer's Rule. So it certainly said 
Cramer's Rule was the way to go. But actually, Cramer's Rule is a disastrous way to 
go, because to compute these determinants, it takes, like, approximately forever. 

So actually I now think of that book title as being Mathematics for the Millionaire, 
because you'd have to be able to pay for, a hopelessly long calculation where 
elimination, of course, produced the x-s, in an instant. But having a formula allows 
you to, with, with letters, you know, allows you to do algebra instead of, algorithms. 

So the, there's some value in the Cramer's Rule formula for x and in the explicit 
formula for, for A inverse. 

They're nice formulas, but I just don't want you to use them. That'ss what it comes 
to. 

If you had to -- and Matlab would never, never do it. 



I mean, it would use elimination. 

OK. Now I'm ready for number three in today's list of amazing connections coming 
through the determinant. And that number three is the fact that the determinant 
gives a volume. 

OK. So now -- so that's my final topic for -- among these -- this my number three 
application, that the determinant is actually equals the volume of something. Can I 
use this little space to consider a special case, and then I'll use the far board to think 
about the general rule. So what I going to prove? Or claim. I claim that the 
determinant of the matrix is the volume of a box. 

OK, and you say, which box? Fair enough. OK. 

So let's see. I'm in -- shall we say we're in, say three by three? Shall we suppose --
let's, let's say three by three. So, so we can really -- we're, we're talking about 
boxes in three dimensions, and three by three matrices. And so all I do -- you could 
guess what the box is. Here is, here is, three dimensions. OK. 

Now I take the first row of the matrix, a11, a22, A -- sorry. a11, a12, a13. 

That row is a vector. It goes to some point. 

That point will be -- and that edge going to it, will be an edge of the box, and that 
point will be a corner of the box. So here is zero zero zero, of course. And here's the 
first row of the matrix: a11, a12, a13. 

So that's one edge of the box. Another edge of the box is to the second row of the 
matrix, row two. 

Can I just call it there row two? And a third row of the box will be to -- a third row --
a third edge of the box will be given by row three. 

So, so there's row three. That, the coordinates, what are the coordinates of that 
corner of the box? a31, a32, a33. So I've got that edge of the box, that edge of the 
box, that edge of the box, and that's all I need. Now I just finish out the box, right? I 
just -- the proper word, of course, is parallelepiped. But for obvious reasons, I wrote 
box. OK. 

So, OK. So there's the, there's the bottom of the box. There're the four edge sides of 
the box. There's the top of the box. 

Cute, right? It's the box that has these three edges and then it's completed to a, to 
a, each, you know, each side is a, is a parallelogram. And it's that box whose volume 
is given by the determinant. That's -- now it's -- possible that the determinant is 
negative. 

So we have to just say what's going on in that case. 

If the determinant is negative, then the volume, we, we should take the absolute 
value really. 



So the volume, if we, if we think of volume as positive, we should take the absolute 
value of the determinant. But the, the sign, what does the sign of the determinant --
it always must tell us something. And somehow it, it will tell us whether these three 
is a -- whether it's a right-handed box or a left-handed box. 

If we, if we reversed two of the edges, we would go between a right-handed box and 
a left-handed box. We wouldn't change the volume, but we would change the, the 
cyclic, order. 

So I won't worry about that. And, so one special case is what? A equal identity 
matrix. 

So let's take that special case. A equal identity matrix. Is the formula determinant of 
identity matrix, does that equal the volume of the box? Well, what is the box? What's 
the box? If A is the identity matrix, then these three rows are the three coordinate 
vectors, and the box is -- it's a cube. It's the unit cube. 

So if, if A is the identity matrix, of course our formula is right. Well, actually that 
proves property one -- that the volume has property one. 

Actually, we could, we could, we could get this thing if we -- if we can show that the 
box volume has the same three properties that define the determinant, then it must 
be the determinant. 

So that's like the, the, the elegant way to prove this. To prove this amazing fact that 
the determinant equals the volume, first we'll check it for the identity matrix. That's 
fine. 

The box is a cube and its volume is one and the determinant is one and, and one 
agrees with one. 

Now let me take one -- let me go up one level to an orthogonal matrix. Because I'd 
like to take this chance to bring in chapter -- the, the previous chapter. Suppose I 
have an orthogonal matrix. 

What did that mean? I always called those things Q. What was the point of --
suppose I have, suppose instead of the identity matrix I'm now going to take A equal 
Q, an orthogonal matrix. 

What was Q then? That was a matrix whose columns were orthonormal, right? Those 
were its columns were unit vectors, perpendicular unit vectors. So what kind of a box 
have we got now? What kind of a box comes from the rows or the columns, I don't 
mind, because the determinant is the determinant of the transpose, so I'm never 
worried about that. 

What kind of a box, what shape box have we got if the matrix is an orthogonal 
matrix? It's another cube. It's a cube again. 

How is it different from the identity cube? It's just rotated. It's just the orthogonal 
matrix Q doesn't have to be the identity matrix. 

It's just the unit cube but turned in space. 



So sure enough, it's the unit cube, and its volume is one. Now is the determinant 
one? What's the determinant of Q? We believe that the determinant of Q better be 
one or minus one, so that our formula is -- checks out in that -- if we can't check it 
in these easy cases where we got a cube, we're not going to get it in the general 
case. 

So why is the determinant of Q equal one or minus one? What do we know about Q? 
What's the one matrix statement of the properties of Q? A matrix with orthonormal 
columns has -- satisfies a certain equation. 

What, what is that? It's if we have this orthogonal matrix, then the fact -- the way to 
say what it, what its properties are is this. 

Q prime, u- u- Q transpose Q equals I. 

Right? That's what -- those are the matrices that get the name Q, the matrices that 
Q transpose Q is I. OK. 

Now from that, tell me why is the determinant one or minus one. How do I, out of 
this fact -- this may even be a homework problem. 

It's there in the, in the list of exercises in the book, and let's just do it. How do I get, 
how do I discover that the determinant of Q is one or maybe minus one? I take 
determinants of both sides, everybody says, so I won't -- I take determinants of 
both sides. On the right-hand side -- so I, when I take determinants of both sides, 
let me just do it. 

Take the determinant of -- take determinants. 

Determinant of the identity is one. 

What's the determinant of that product? Rule nine is paying off now. The 
determinant of a product is the determinant of this guy -- maybe I'll put it, I'll use 
that symbol for determinant. 

It's the determinant of that guy times the determinant of the other guy. 

And then what's the determinant of Q transpose? It's the same as the determinant of 
Q. 

Rule ten pays off. So this is just this thing squared. So that determinant squared is 
one and sure enough it's one or minus one. 

Great. So in these special cases of cubes, we really do have determinant equals 
volume. Now can I just push that to non-cubes. Let me push it first to rectangles, 
rectangular boxes, where I'm just multiplying the e- the edges are -- let me keep all 
the ninety degree angles, because those are -- that, that makes my life easy. 

And just stretch the edges. Suppose I stretch that first edge, suppose this first edge 
I double. 

Suppose I double that first edge, keeping the other edges the same. What happens 
to the volume? It doubles, right? We know that the volume of a cube doubles. In 



fact, because we know that the new cube would sit right on top -- I mean, the new, 
the added cube would sit right on -- would fit -- probably a geometer would say 
congruent or something -- would go right in, in the other. 

We'd have two. We have two identical cubes. 

Total volume is now two. OK. 

So I want -- if I double an edge, the volume doubles. 

What happens to the determinant? If I double, the first row of a matrix, what ch- ch-
what's the effect on the determinant? It also doubles, right? And that was rule 
number 3a. Remember rule 3a was that if I, I could, if I had a factor in, in row one, 
T, I could factor it out. So if, if I have a factor two in that row one, I can factor it out 
of the determinant. It agrees with the -- the volume of the box has that factor two. 

So, so volume satisfies this property 3a. 

And now I really close, but I -- but to get to the very end of this proof, I have to get 
away from right angles. I have to allow the possibility of, other angles. And -- or 
what's saying the same thing, I have to check that the volume also satisfies 3b. 

So can I -- This is end of proof that the -- so I'm -- determinant of A equals volume 
of box, and where I right now? This volume has properties, properties one, no 
problem. 

If the box is the cube, everything is -- if the box is the unit cube, its volume is one. 

Property two was if I reverse two rows, but that doesn't change the box. And it 
doesn't change the absolute value, so no problem there. 

Property 3a was if I mul- you remember what 3a was? So property one was about 
the identity matrix. Property two was about a plus or minus sign that I don't care 
about. Property 3a was a factor T in a row. But now I've got property three B to deal 
with. What was property 3b? This is a great way to review these, properties. 

So that 3b, the property 3b said -- let's do, let's do two by two. So said that if I had 
a+a', b+b', c, d that this equaled what? So this is property 3b. This is the linearity in 
row one by itself. So c d is staying the same, and I can split this into a b and a' b'. 

That's property 3b, at least in the two by two case. And what I -- I wanted now to 
show that the volume, which two, two by two, that means area, has this, has this 
property. 

Let me just emphasize that we have got -- we're getting -- this is a formula, then, 
for the area of a parallelogram. The area of this parallelogram -- can I just draw it? 
OK, here's the, here's the parallelogram. I have the row a b. 

That's the first row. That's the point a b. 

And I tack on c d. c d, coming out of here. 

And I complete the parallelogram. 



So this is -- well, I better make it look right. 

It's really this one that has coordinates c d and this has coordinates -- well, whatever 
the sum is. 

And of course starting at zero zero. 

So we all know, this is a+c, b+d. Rather than -- I'm pausing on that proof for a 
minute just to going back to our formula. 

Because I want you to see that unlike Cramer's Rule, that I wasn't that impressed 
by, I'm very impressed by this formula for the area of a parallelogram. 

And what's our formula? What, what's the area of that parallelogram? If I had asked 
you that last year, you would have said OK, the area of a parallelogram is the base 
times the height, right? So you would have figured out what this base, the -- how 
long that base was. It's like the square root of A squared plus b squared. 

And then you would have figured out how much is this height, whatever it is. It's 
horrible. 

This, I mean, we got square roots, and in that height there would be other revolting 
stuff. But now what's the formula that we now know for the area? It's the 
determinant of our little matrix. 

It's just ad-bc. No square roots. 

Totally rememberable, because it's exactly a formula that we've been studying the 
whole, for three lectures. 

OK. That's, you know, that's the most important point I'm making here. 

Is that if you know the coordinates of a box, of the corners, then you have a great 
formula for the volume, area or volume, that doesn't involve any lengths or any 
angles or any heights, but just involves the coordinates that you've got. 

And similarly, what's the area of this triangle? Suppose I chop that off and say what 
about -- because you might often be interested in a triangle instead of a 
parallelogram. 

What's the area of this triangle? Now there again, everybody would have said the 
area of a triangle is half the base times the height. 

And in some cases, if you know the base that a, that's -- and the height, that's fine. 

But here, we, what we know is the coordinates of the corners. We know the vertices. 

And so what's the area of that triangle? If I know these, if I know a b, c d, and zero 
zero, what's the area? It's just half, so it's just half of this. 

So this is, this is a- a b -- a d - b c for the parallelogram and one half of that, one 
half of ad-bc for the triangle. So I mean, this is a totally trivial remark, to say, well, 



divide by two. But it's just that you more often see triangles, and you feel you know 
the formula for the area but the good formula for the area is this one. And I'm just 
going to -- I'm just going to say one more thing about the area of a triangle. 

It's just because it's -- you know, it's so great to have a good formula for something. 
What if our triangle did not start at zero zero? What if our triangle, what if we had 
this -- what if we had -- so I'm coming back to triangles again. But let me, let me 
put this triangle somewhere, it's -- I'm staying with triangles, I'm just in two 
dimensions, but I'm going to allow you to give me any three corners. 

And in -- those six numbers must determine the area. 

And what's the formula? The area is going to be, it's going to be, there'll be that half 
of a parallelogram. I mean, basically this can't be completely new, right? We've got 
the area when -- we, we know the area when this is zero zero. Now we just want to 
lift our sight slightly and get the area when all th- so let me write down what it, what 
it comes out to be. 

It turns out that if you do this, x1 y1 and a 1, x2 y2 and a 1, x3 y3 and a 1, that that 
works. That the determinant symbol, of course. It's just -- if I gave you that 
determinant to find, you might subtract this row from this. 

It would kill that one. Subtract this row from this, it would kill that one. Then you'd 
have a simple determinant to do with differences, and it would -- this little 
subtraction, what I did was equivalent to moving the triangle to start at the origin. 

I did it fast, because time is up. 

And I didn't complete that proof of 3b. 

I'll leave -- the book has a carefully drawn figure to show why that works. But I hope 
you saw the main point is that for area and volume, determinant gives a great 
formula. OK. 

And next lectures are about eigenvalues, so we're really into the big stuff. 

Thanks. 
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