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PROFESSOR: Hi, welcome back to recitation. In the lecture, we've learned very important

concepts-- linear space and linear subspace. Well, as you can imagine, if we call

something a space, we're putting a lot of things, a lot of objects into one set. But for

linear space, we want to put them in according to a particular manner. So can you

recall what are the conditions for a set to be a linear space?

You take any two elements from that set, take the sum of them. You want the sum

to be still in the same set. That's the first condition.

Second, you take any multiple of any element from that set, the result will still be in

that set. That's the second condition. And if within a linear space you can find a

subset which also satisfies the two conditions, that will give you a subspace. Today,

we're going to look at this example to review these two important properties of linear

space and subspace.

I have two vectors, x1 and x2. Both of them are vectors in R3. So as you can see,

I've drawn them here. This is x1, and this is x2. So first, we want to find the

subspace generated by x1. I call it v1. Let me say a word about this generated by.

So what do I mean by a subspace generated by x1? I'm looking for the smallest

subspace that contains x1, as small as you can get. Similarly, I want to find out the

subspace generated by x2, call it v2. Then we want to say something about the

intersection of v1 and v2. That's the first question.

And the second question, we want to put vector x1 and x2 together and look at the

subspace generated by x1 and x2 at the same time. So I call it v3. And a good

question to be asked here is what is the relation of v3 to v1 union v2. Do you think

they're equal?

Within the second question, I would also like you to find a subspace, call it s of v3,

such that neither x1 nor x2 is in s. And the last question is I'd like you to say

something about the intersection of v3 with the xy plane. So notice that, of course,

xy plane is also a subspace of R3. So again, I'm looking at the intersection of two
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subspaces.

All right, why don't you hit the pause now, and try to solve these three problems on

your own. And I'd like you to identify your answers in this picture whenever you can.

I'll come back later and continue working with you.

OK, how did your drawing go? Let's look at this together. First, we want to find

subspace generated by x1. So here is x1. Let's keep in mind the two conditions that

a subspace has to satisfy. Well, if I want to obtain the subspace, at least I have to

be able to take any multiple of x1, right? So that means at least I have to include the

straight line that contains x1.

So I'm going to try to draw the straight line here. So I'm just simply going to extend

this x1 along to both directions. So x1, I will try very hard to make it straight. But to

be honest, it's really hard for me to draw a straight line from the board. Is that

straight? Seems fine.

All right, so this entire line contains x1. So at least this line has to be in v1. Is there

anything else beyond this line?

Now let's turn to the second condition. The second condition says that we have to

be able to take any two elements, take the sum, and the sum will remain in that set.

Does it work for this line? You take any two vectors on this line or you can say any

two points on this line, and then you take to sum of them.

Of course, you still get something on this line. You won't be able to escape from it.

Which means this line is a perfect set that satisfies the two conditions. So this line

simply gives me v1. That is the smallest subspace that contains x1. So in other

words, the subspace generated by x1 is v1.

So similarly, let's look at x2. What is the subspace generated by x2? Again you get

the entire straight line that contains x2. So I'm going to extend x2 in both directions.

I hope it's straight. Not too bad. That will give me v2. All right, v1, v2. Both of them

are subspaces of R3.
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Now let's look at the intersection of v1 and v2. So we know that both of them are

straight lines. And clearly they're not parallel, because x1 and x2 are not parallel. So

what is the intersection of v1 and v2? The intersection of v1 and v2 is the only point

at which they cross. And where's that point? It's here, right at the origin. Because

both of them pass the origin. I'm going to use o to denote. That's the intersection of

v1 and v2.

This is a set with only one element. What can you say about this set? I claim this is

also a subspace of R3. By saying space, we usually mean a lot of objects together.

But look at this set. This set fits perfectly into the conditions of being a linear space.

You take any multiple of 0, again you get 0-- 0 plus 0, you get 0. So that's a

perfectly fine subspace of R3.

All right, so what we have got here is I take the intersection of v1 and v2, and the

result, again, becomes a subspace, which only contains the origin. That completes

the first question.

Let's look at the second one. In the second question, I want to put x1 and x2

together, and look at the subspace generated by x1 and x2. And I would also like

you to say something about the relation between v1 union v2 to the subspace

generated by x1 x2. Let's try to answer the second question first. Is there a chance

that v1 union v2 equal to v3? OK, so what is v1 union v2? That's clearly just two

lines, right? This line union this line.

Is there a chance that this union will be a subspace? Let's check the two conditions.

First, you take any multiple of the elements in this union. It's either on this line or on

this line. Seems that the multiple is still going to stay inside the union. So the first

condition is actually satisfied.

What about the second one? The second one says that I have to be able to take

any sum, the sum of any two elements, from these two lines. Let's just try a simple

sum, x1 plus x2. So what is x1 plus x2? You just sum up each coordinate. That will

give you 2, 5, 3. In this picture, can I draw it in this picture? It's going to be

somewhere here. That's x1 plus x3.
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Did you notice something? You clearly have got out of this union. So this sum is not

inside v1 union v2. Which means v1 union v2 is not a subspace. Then it's

impossible that this union will equal to v3. So the answer to the second question is

no, v3 is not equal to v1 union v2.

Now let's identify v3. Well, as you can see, since we have seen from this argument

that we have to be able to include this diagonal vector here. But in fact, as you can

see since we can take any elements from these two lines, we're actually including

every vector on the plane spanned by v1 and v2. So in other words, I'm actually

looking at this huge plane that is spanned by v1 and v2. That will give me v3. So

that's reasonable. I'm looking at the subspace generated by two lines in R3. And

that two line will be able to span a plane in R3.

Now for the last part of question two, I want to find a subspace s of v3. So I want to

find a subspace of this plane such that x1 is not s. x2 is not in s either. So I want to

stay away from this line and this line. Can you find such a subspace of v3? It's right

here. Because if you look at this vector, x1 plus x2-- sorry, that should be x2. If you

look at this vector, and if you look at the subspace generated by this vector, again

you know it's going to be a line. And this line is right here.

This line forms a perfect subspace of v3. But neither x1 nor x2 is inside this

subspace. So let's just make it S. Of course, the choice is not unique. You can take

twice x1 plus x2 or x1 plus twice x2. OK, we have completed the second problem.

The last problems ask us to find the intersection of v3 with xy plane. Well, just think

about that. We've identified v3 as this plane spanned by line v1 and v2. And xy is

also a plane. So we're talking about the intersection of two planes in R3. What

would that be? So you have two planes intersect. The intersection will be a straight

line again, right? So let's locate that straight line.

We want to find something that is inside of v3 and xy plane at the same time. What

can you say about the points in xy plane? The z-coordinate has to be 0. And at the

same time, we know that at least x1 and x2 are in v3. So did you notice that? x2 is a
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vector that lies in v3. But at the same time, the z-coordinate of x2 is 0. That is what

we're looking for.

So the intersection of v3 with xy plane will simply be the line that contains x2. And

here we've identified that as v2. That's it. This is a subspace of R3. And this is the

subspace of R3. The intersection is again a subspace of R3.

I hope you've learned a way to somehow visualize this linear space and subspace

through this exercise. Thank you for watching, and I'll see you next time.
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