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  Transposes, permutations, spaces Rn 

In this lecture we introduce vector spaces and their subspaces. 

Permutations 

Multiplication by a permutation matrix P swaps the rows of a matrix; when 
applying the method of elimination we use permutation matrices to move ze­
ros out of pivot positions. Our factorization A = LU then becomes PA = LU, 
where P is a permutation matrix which reorders any number of rows of A. 
Recall that P−1 = PT , i.e. that PT P = I. 

Transposes 

When we take the transpose of a matrix, its rows become columns and its 
columns become rows. If we denote the entry in row i column j of matrix 
A by Aij, then we can describe AT by: AT

ij = Aji. For example: 

⎡ ⎤T1 3 � � 
1 2 4⎣ 2 3 ⎦ = .3 3 14 1 

A matrix A is symmetric if AT = A. Given any matrix R (not necessarily 

square) the product RT R is always symmetric, because 
� 

RT R 
�T 

= RT 
� 

RT 
�T 

= 

RT R. (Note that 
� 

RT�T 
= R.) 

Vector spaces 

We can add vectors and multiply them by numbers, which means we can dis­
cuss linear combinations of vectors. These combinations follow the rules of a 
vector space. 

One such vector space is R2, the set of all vectors with exactly two real 

number components. We depict the vector 
a by drawing an arrow from b 

the origin to the point (a, b) which is a units to the right of the origin and b 
units above it, and we call R2 the “x − y plane”. 

Another example of a space is Rn, the set of (column) vectors with n real 
number components. 

Closure 

The collection of vectors with exactly two positive real valued components is 
not a vector space. The sum of any two vectors in that collection is again in 
the collection, but multiplying any vector by, say, −5, gives a vector that’s not 
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in the collection. We say that this collection of positive vectors is closed under 
addition but not under multiplication. 

If a collection of vectors is closed under linear combinations (i.e. under 
addition and multiplication by any real numbers), and if multiplication and 
addition behave in a reasonable way, then we call that collection a vector space. 

Subspaces 

A vector space that is contained inside of another vector space is called a sub­
space of that space. For example, take any non-zero vector v in R2. Then the 
set of all vectors cv, where c is a real number, forms a subspace of R2. This 

collection of vectors describes a line through 
0 in R2 and is closed under 0 

addition. 
A line in R2 that does not pass through the origin is not a subspace of R2. 

Multiplying any vector on that line by 0 gives the zero vector, which does not 
lie on the line. Every subspace must contain the zero vector because vector 
spaces are closed under multiplication. 

The subspaces of R2 are: 

1. all of R2, 

02. any line through and0 

3. the zero vector alone (Z). 

The subspaces of R3 are: 

1. all of R3, 

2. any plane through the origin, 

3. any line through the origin, and 

4. the zero vector alone (Z). 

Column space 

Given a matrix A with columns in R3, these columns and all their linear combi­
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nations form a subspace of R3. This is the column space C(A). If A = 2 3 , 
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1 
the column space of A is the plane through the origin in R3 containing 2 

4 
3 

and 3 . 
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Our next task will be to understand the equation Ax = b in terms of sub­
spaces and the column space of A. 
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