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BEN HARRIS: Hi. I'm Ben.

Today we are going to do an LU decomposition problem. Here's the problem right

here. Find that LU decomposition of this matrix A. Now notice that this matrix A has

variables, as well as numbers. So the sentence ends, when it exists. And the

second part of the question asks you for which real numbers a and b does the LU

decomposition of this matrix actually exists?

Now, you can hit pause now and I'll give you a few seconds. You can try to solve

this on your own, and then we'll be back and we can do it together.

And we're back. Now, what do you have to remember when doing an LU

decomposition problem? Well we do elimination in the same way that we did before

in order to find U. But with this question we need to find L as well. So we need to do

elimination, but we also need to keep track of the elimination matrices along the

way. Good. So let's do that.

So let me put my matrix up here. And we want to do elimination. So which entry do

we eliminate first? That's right. It's this 2 1 entry. So we replace the second row, by

the second row minus a times the first row, and we get this.

But we're not just doing elimination, we're finding an LU decomposition. So we need

to keep track of the matrix that I multiplied the elimination matrix, that I multiplied

this matrix A by on the left to get this matrix. So what is that? That's this E21. Since I

eliminated the 21 entry, I'll call it E21. And it's this matrix.

Why is it this matrix? Well remember how multiplication on the left works. I replaced

the first row by just the first row. I replaced the second row by the second row minus

a times the first row. So you can just read off from these rows which operations I

did.

Now, which entries should we eliminate next? We need to eliminate this b. So we

will replace the third row by the third row minus b times the first row. And which
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elimination matrix did we use? Well note, we replaced the third row by the third row

minus b times the first row. That's exactly what you should read off this elimination

matrix. Good.

Now, we only have one step left. We only need to eliminate one last entry. But this

one's a little tricky, so let's be careful. In order to eliminate this b, we need a to be a

pivot. In particular, we need a to be non-0. If a were zero here, then we would have

to do a row exchange. And that's no good. You can't find an LU decomposition if

you have to do a row exchange in elimination. So we need to assume that a is non-

zero in order to keep going. So let's just assume there that a is non-zero.

Now, what do we do? Well we can replace the third row by the third row minus b

over a times the second row. And we just get this. a minus b. And let's write down

our elimination matrix. E32 now. There's our elimination matrix. We replaced the

third row by the third row minus b over a times the second row. Good.

So we found our U matrix. That's what elimination does, it gives us our U matrix. So

let me write it up here. 1 0 1, 0 a 0, 0 0 a minus b. Good.

Now we have to find our L matrix, and we need to use these elimination matrices

that we've been recording along the way in order to do that. So remember that we

started with A, and we got U. And how did we do that? Well we multiplied on the left

by all of these elimination matrices, E21, E31, and E32. Sorry if that's scrunching

together there.

Now, if we move these elimination matrices to the other side then we'll get L. So

what do we have? We have A equals E21 inverse, E31 inverse, E32 inverse times

U. And this is our L, this product of these three matrices. Good.

So let's compute it now. So L is the product of three matrices. I need to get them by

going back and looking at these three elimination matrices and taking their inverses.

Well the nice thing about taking an inverse of an elementary matrix like this is we

just make a minus a plus or a plus a minus. So that's easy enough. We just change

the off-diagonal entries, we just change their signs. You can check that that does
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what we wanted it to. It gives us the inverse. Good.

And the last comment is that multiplying these three matrices is really easy in this

order. Turns out all you do is you just plop these entries right in. 1 1. Good. So this

is our L matrix.

So now we have our U matrix and our L matrix, and we're done with the first part of

the question.

The second part asks us for which real numbers a and b does this decomposition

exist? Now let's go back and remember that at one point we had to assume that A

was non-zero. That was the only assumption we had to make to get this

decomposition. So it exists, it being in this decomposition, when a is non-zero. And

that's the answer to the second part. So we have our LU decomposition, and we

know when it exists.

Before I end, two comments. First, always check your work. Always go back and

multiply L times U and make sure it's A, because it's easy to screw up the

elimination process and it's easy to check your work. So if you go back and make

sure things are as they should be.

Second comment is that you might be worried when you do this elimination process

that, well OK, we had to assume a is non-zero because we wanted a non-zero pivot.

You might worry that we might have to have a minus b be non-zero. But in fact, a

minus b can be 0. It's not a problem for this entry to be 0 because we don't have to

do a row exchange to get U. That's the only time when we can't do the LU

decomposition. In particular, singular matrices can have LU decompositions. Good.

Thanks.

3


