18.06SC Unit 1 Exam Solutions

1 (24 pts.) This question is about an m by n matrix A for which

 $Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ has no solutions and $Ax = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ has exactly one solution.

- (a) Give all possible information about m and n and the rank r of A.
- (b) Find all solutions to Ax = 0 and explain your answer.
- (c) Write down an example of a matrix A that fits the description in part (a).

Solution.

(a) $Ax = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ has one solution $\Longrightarrow N(A) = \{0\}$ so r = n. (Also, m = 3 since $Ax \in \mathbb{R}^3$.)

 $Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ has no solution} \Longrightarrow C(A) \neq \mathbb{R}^3, \text{ so } r < m.$

There are two possibilities: $m=3 \\ r=n=1$ and r=n=2 .

(b) Since $N(A) = \{0\}$ (because $Ax = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ has **1** solution), there is a unique solution to

Ax = 0, which is clearly x = 0. (Can be either $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ or $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ depending on if n = 1 or n = 2.)

(c) A could be $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ (many more possibilities).

2 (24 pts.) The 3 by 3 matrix A reduces to the identity matrix I by the following three row operations (in order):

 E_{21} : Subtract 4 (row 1) from row 2.

 E_{31} : Subtract 3 (row 1) from row 3.

 E_{23} : Subtract row 3 from row 2.

- (a) Write the inverse matrix A^{-1} in terms of the E's. Then compute A^{-1} .
- (b) What is the original matrix A?
- (c) What is the lower triangular factor L in A = LU?

Solution.

(a) Apply the three operations to I, i.e. $A^{-1} = E_{23}E_{31}E_{21}$:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ -3 & 0 & 1 \end{bmatrix} = A^{-1}$$

(b) Apply the inverse operations in reverse order to I, i.e. $A = E_{21}^{-1} E_{31}^{-1} E_{23}^{-1}$:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 1 \\ 3 & 0 & 1 \end{bmatrix} = A$$

Check
$$\begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 1 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ -3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(c)
$$L = \begin{bmatrix} 1 \\ 4 & 1 \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 \\ & 1 \\ 3 & & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}.$$

3 (28 pts.) This 3 by 4 matrix depends on c:

$$A = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 3 & c & 2 & 8 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

- (a) For each c find a basis for the column space of A.
- (b) For each c find a basis for the nullspace of A.
- (c) For each c find the complete solution x to $Ax = \begin{bmatrix} 1 \\ c \\ 0 \end{bmatrix}$.

Solution.

(a) Elimination gives $\begin{bmatrix} \boxed{1} & 1 & 2 & 4 \\ 0 & c-3 & -4 & -4 \\ 0 & 0 & 2 & 2 \end{bmatrix}$ so there are two cases:

If
$$c \neq 3$$
, $c-3$ is a pivot and $U = \begin{bmatrix} \boxed{1} & 1 & 2 & 4 \\ 0 & \boxed{c-3} & -4 & -4 \\ 0 & 0 & \boxed{2} & 2 \end{bmatrix} \longrightarrow R = \begin{bmatrix} \boxed{1} & 0 & 0 & 2 \\ 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & \boxed{1} & 1 \end{bmatrix}$

so a basis for C(A) is the first three columns of A: $\left\{ \begin{bmatrix} 1\\3\\0 \end{bmatrix}, \begin{bmatrix} 1\\c\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\2 \end{bmatrix} \right\}$.

If
$$c = 3$$
, $c - 3 = 0$ and $U = \begin{bmatrix} \boxed{1} & 1 & 2 & 4 \\ 0 & 0 & \boxed{-4} & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow R = \begin{bmatrix} \boxed{1} & 1 & 0 & 2 \\ 0 & 0 & \boxed{1} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

so take the first and third columns of A as a basis for C(A): $\left\{ \begin{bmatrix} 1\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\2 \end{bmatrix} \right\}$.

(b) If
$$c \neq 3$$
, the special solutions give $N(A) = \begin{cases} x_4 & -2 \\ 0 \\ -1 \\ 1 \end{cases}$

If $c = 3$, the special solutions give $N(A) = \begin{cases} x_2 & -1 \\ 1 \\ 0 \\ 0 \end{cases} + x_4 \begin{bmatrix} -2 \\ 0 \\ -1 \\ 1 \end{cases}$

(c) By inspection,
$$x_p = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 is one particular solution (other correct answers)

for
$$c \neq 3$$
, the complete solution is $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 0 \\ -1 \\ 1 \end{bmatrix}$

for
$$c = 3$$
, the complete solution is
$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

- **4 (24 pts.)** (a) If A is a 3 by 5 matrix, what information do you have about the nullspace of A?
 - (b) Suppose row operations on A lead to this matrix R = rref(A):

$$R = \begin{bmatrix} 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Write all known information about the columns of A.

(c) In the vector space M of all 3 by 3 matrices (you could call this a matrix space), what subspace S is spanned by all possible row reduced echelon forms R?

Solution.

- (a) N(A) has dimension at least 2 (and at most 5).
- (b) (7pts) Columns 1, 4, 5 of A form a basis for C(A).

$$(\approx 1 pt)$$
 Column 2 is $4 \times (Column 1)$; Column 3 is $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

(c) $A = \left\{ \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} \right\}$, the set of upper triangular matrices.

(A basis of six echelon forms is

$$\left\{ \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}, \begin{bmatrix} 1 & & \\ & & 1 \end{bmatrix}, \begin{bmatrix} 1 & & \\ & & 1 \end{bmatrix}, \begin{bmatrix} 1 & & \\ & & \end{bmatrix}, \begin{bmatrix} 1 & 1 & \\ & & \end{bmatrix}, \begin{bmatrix} 1 & & 1 \\ & & & \end{bmatrix} \right\}.)$$

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.