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NIKOLA KAMBUROV: Hi everyone. In this video, we're going to explore briefly the concept of a vector 
subspace.  

 

This is the problem we're going to do. We're given these four different subsets of R3, and we are asked 
to figure out which of these is, in fact, the subspace. So I'll give you a few moments to try to do this on 
your own, and then please come back to see whether you were right.  

 

So hi again. So before we start, let's briefly recall what a vector subspace is. Well vector subspace, of 
course, it's a subset. In this case, a subset of R3. But it behaves like a vector space itself, meaning that if 
we take linear combination of element in the subset, what we get is still something in that subset.  

 

And in class, professor Strang showed you a few specific examples of subspaces, which are related to 
matrices. One of them was the null space of a matrix, all the vectors that the matrix sends to 0, and the 
column space of a matrix, which is the span of the column of a matrix. So let's see if we can apply what 
we've learned in lecture to our problem.  

 

Number one, we are given a linear equation relation between b1, b2, and b3. Once we have something 
linear, this is a philosophy that you'll learn in this class, we can always write this as a matrix equation.  

 

So in particular, b1 plus b2 minus b3 equals 0, we can just write it as the matrix 1, 1 negative 1, and b1, 
b2, b3 equal to 0. So therefore, b1, b2, and b3 precisely describe the null space of 1, 1 negative 1. And 
thus, what we are given in the first question is a subspace.  

 

What about the second one? Again, we are given the relation between b1, b2, b3, but it's not linear. b3 
is the product of b1 and b2. So right, your guts tell you that this shouldn't be a vector space. But we 
need to prove why.  

 



Well, see that the vector 1, 1, 1 is inside this subset, because the third entry is the product 1, is the 
product 1 and 1. If the subset were a subspace itself, then we would have 2, 2, and 2 in it as well. Right, 
because any multiple of a vector in the subspace is inside the subspace. But is 2, 2, 2 described by this 
equation? Well no, because the third entry 2 is not equal to 2 times 2.  

 

So the example in number 2 is not a subspace.  

 

Let's try 3. And first, so we are given the subset in question 3 is given as the linear span of these two 
vectors, 1 0 negative 1 and 1, 0, 1. Plus the vector 1, 0, 0. So let's think about this geometrically. We 
know that the linear span of two linear independent vectors, and these are obviously linearly 
independent, is a plane in R3. So we have the plane, and we add a vector to the point on this plane.  

 

So what if the vector were lying on the plane? Well we're not going to change the plane. We're still 
going to remain in the plane. What I'm hinting at is the following thing. That, in fact, 1, 0, 0 is a linear 
combination of 1, 0 negative 1 and 1, 0, 1, and it's fairly obvious to see which linear combination of 
these two vectors it is. It's 1/2, 1, 0, negative 1 plus 1/2 times 1, 0, 1.  

 

So we can write the whole relation here in the following way. b1, b2, b3 is 1, 0, 0, which we can write 
this. Plus 1, 0 negative 1, and c2, 1 0, 1.  

 

Let me continue this here. So b1, b2 and b3 is precisely c1 plus 1/2 of 1, 0, negative 1 plus c2 plus 1/2 of 
1, 0, 1. So indeed, the points b1, b2, and b3 are described by the linear span 1, 0, negative 1, and 1, 0, 1. 
So it is a vector subspace itself.  

 

And finally, let's look at number 4. So we have a similar situation. I mean it's almost the same situation. 
We again have the linear span of precisely the same vectors as in question 3. But this time we add the 
vector 0, 1, 0.  

 

Now, 0, 1, 0 is not in the span of these two vectors. So the argument that we just showed for 3 doesn't 
work. But what we know about vector subspace is the following thing. Almost treated from the axioms 
that 0 needs to be inside the subset in order for it to be a subspace. It's a necessary condition.  

 



Well is 0 inside this subset? Meaning can we find coefficients c1 and c2 plus 0, 1, 0 to equal 0 vector? 
And the answer is no. And why is this? There's a very easy way to see it. Well we just look at the second 
entry of the vector is, and we see that any multiple. So the linear span of these two vectors will have as 
its second entry 0. And when we add it to 1, we can never get a 0 entry here. So the subset in 4 is not a 
subspace.  

 

So I hope this was useful and just getting an intuition which subsets of R3 are subspaces. I'll see you guys 
later.   
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