
An overview of key ideas 

This is an overview of linear algebra given at the start of a course on the math­
ematics of engineering. 

Linear algebra progresses from vectors to matrices to subspaces. 

Vectors 

What do you do with vectors? Take combinations. 
We can multiply vectors by scalars, add, and subtract. Given vectors u, v 

and w we can form the linear combination x1u + x2v + x3w = b. 
An example in R3 would be: ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

1 0 0 
u = ⎣ −1 ⎦ , v = ⎣ 1 ⎦ , w = ⎣ 0 ⎦ . 

0 −1 1 

The collection of all multiples of u forms a line through the origin. The collec­
tion of all multiples of v forms another line. The collection of all combinations 
of u and v forms a plane. Taking all combinations of some vectors creates a 
subspace. 

We could continue like this, or we can use a matrix to add in all multiples 
of w. 

Matrices


Create a matrix A with vectors u, v and w in its columns:
⎡ ⎤ 
1 0 0 

A = ⎣ −1 
0 

1 
−1 

0 
1 

⎦ . 

The product: ⎡ ⎤⎡ ⎤ ⎡ ⎤ 
1 0 0 x1 x1 

Ax = ⎣ −1 1 0 ⎦⎣ x2 ⎦ = ⎣ −x1 + x2 ⎦ 

0 −1 1 x3 −x2 + x3 

equals the sum x1u + x2v + x3w = b. The product of a matrix and a vector is 
a combination of the columns of the matrix. (This particular matrix A is a dif­
ference matrix because the components of Ax are differences of the components 
of that vector.) 

When we say x1u + x2v + x3w = b we’re thinking about multiplying num­
bers by vectors; when we say Ax = b we’re thinking about multiplying a 
matrix (whose columns are u, v and w) by the numbers. The calculations are 
the same, but our perspective has changed. 
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For any input vector x, the output of the operation “multiplication by A” is 
some vector b: ⎡ ⎤ ⎡ ⎤ 

1 1 
A ⎣ 4 ⎦ = ⎣ 3 ⎦ . 

9 5 

A deeper question is to start with a vector b and ask “for what vectors x does 
Ax = b?” In our example, this means solving three equations in three un­
knowns. Solving: ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

1 0 0 x1 x1 b1 
Ax = ⎣ −1 1 0 ⎦⎣ x2 ⎦ = ⎣ x2 − x1 ⎦ = ⎣ b2 ⎦ 

0 −1 1 x3 x3 − x2 b3 

is equivalent to solving: 

x1 = b1 

x2 − x1 = b2 

=x3 − x2 b3. 

We see that x1 = b1 and so x2 must equal b1 + b2. In vector form, the solution 
is: ⎡ ⎤ ⎡ ⎤ 

x1 b1 ⎣ x2 ⎦ = ⎣ b1 + b2 ⎦ . 
x3 b1 + b2 + b3 

But this just says: ⎡ ⎤⎡ ⎤ 
1 0 0 b1 

x = ⎣ 1 1 0 ⎦⎣ b2 ⎦ , 
1 1 1 b3 

or x = A−1b. If the matrix A is invertible, we can multiply on both sides by 
A−1 to find the unique solution x to Ax = b. We might say that A represents a 
transform x b that has an inverse transform b x.→ � 

0 
� � 

0 
� → 

In particular, if b =	 0 then x = 0 . 
0 0 

The second example has the same columns u and v and replaces column 
vector w: ⎡ ⎤ 

C = ⎣ 
1 

−1 
0 

0 
1 

−1 

−1 
0 
1 

⎦ . 

Then: ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

Cx = ⎣ 
1 

−1 
0 

0 
1 

−1 

−1 
0 
1 

⎦ ⎣ 
x1 
x2 
x3 

⎦ = ⎣ 
x1 − x3 
x2 − x1 
x3 − x2 

⎦ 

and our system of three equations in three unknowns becomes circular. 
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Where before Ax = 0 implied x = 0, there are non-zero vectors x for which 
Cx = 0. For any vector x with x1 = x2 = x3, Cx = 0. This is a significant 
difference; we can’t multiply both sides of Cx = 0 by an inverse to find a non­
zero solution x. 

The system of equations encoded in Cx = b is: 

= 

x2 − x1 = b2 

x3 − x2 = b3. 

x1 − x3 b1 

If we add these three equations together, we get: 

0 = b1 +2 +b3. 

This tells us that Cx = b has a solution x only when the components of b sum 
to 0. In a physical system, this might tell us that the system is stable as long as 
the forces on it are balanced. 

Subspaces 

Geometrically, the columns of C lie in the same plane (they are dependent; the 
columns of A are independent). There are many vectors in R3 which do not lie 
in that plane. Those vectors cannot be written as a linear combination of the 
columns of C and so correspond to values of b for which Cx = b has no solu­
tion x. The linear combinations of the columns of C form a two dimensional 
subspace of R3. 

This plane of combinations of u, v and w can be described as “all vectors 
Cx”. But we know that the vectors b for which Cx = b satisfy the condition 
b1 + b2 + b3 = 0. So the plane of all combinations of u and v consists of all 
vectors whose components sum to 0. 

If we take all combinations of: ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
1 0 0 

u = ⎣ −1 ⎦ , v = ⎣ 1 ⎦ , and w = ⎣ 0 ⎦ 

0 −1 1 

we get the entire space R3; the equation Ax = b has a solution for every b in 
R3. We say that u, v and w form a basis for R3. 

A basis for Rn is a collection of n independent vectors in Rn. Equivalently, 
a basis is a collection of n vectors whose combinations cover the whole space. 
Or, a collection of vectors forms a basis whenever a matrix which has those 
vectors as its columns is invertible. 

A vector space is a collection of vectors that is closed under linear combina­
tions. A subspace is a vector space inside another vector space; a plane through 
the origin in R3 is an example of a subspace. A subspace could be equal to the 
space it’s contained in; the smallest subspace contains only the zero vector. 

The subspaces of R3 are: 
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•	 the origin, 

•	 a line through the origin, 

•	 a plane through the origin,


all of R3.
• 

Conclusion 

When you look at a matrix, try to see “what is it doing?” 
Matrices can be rectangular; we can have seven equations in three un­

knowns. Rectangular matrices are not invertible, but the symmetric, square 
matrix AT A that often appears when studying rectangular matrices may be 
invertible. 
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