
REFLECTIONS IN A EUCLIDEAN SPACE 

YOUR NAME HERE 

18.099 ­ 18.06 CI. 
Due on Monday, May 10 in class. 

Write a paper proving the statements formulated below. Add your own 
examples, asides and discussions whenever needed. 

Let V be a finite dimensional real linear space. 

Definition 1. A function �, � : V × V R is a bilinear form on V if for 
all x1, x2, x, y1, y2, y ∈ V and all k ∈ R, 

→ 

�x1 + kx2, y� = �x1, y� + k�x2, y�, and 

�x, y1 + ky2� = �x, y1� + k�x, y2�. 

Definition 2. A bilinear form �, � in V is symmetric if �x, y� = �y, x� for 
all x, y ∈ V . A symmetric bilinear form is nondegenerate if �a, x� = 0 for 
all x ∈ V implies a = 0. It is positive definite if �x, x� > 0 for any nonzero 
x ∈ V . An inner product on V is a symmetric positive definite bilinear form 
on V . 

Theorem 3. Define a bilinear form on V = Rn by �ei, ej� = δij, where 
{ei}n

i=1 is a basis in V . Then �, � is an inner product in V . 

Definition 4. A Euclidean space is a finite dimensional real linear space 
with an inner product. 

Theorem 5. Any n­dimensional Euclidean space V has a basis {ei}n suchi=1 
that �ei, ej� = δij. 

Hint: Use the Gram­Schmidt orthogonalization process. 
Below V = Rn is a Euclidean space with the inner product �, �. 

Definition 6. Two vectors x, y ∈ V are orthogonal if �x, y� = 0. Two 
subspaces U,W ∈ V are orthogonal if �x, y� = 0 for all x ∈ U and y ∈ W . 

Check that if U and W are orthogonal subspaces in V , then dim(U) + 
dim(W ) = dim(U + W ). 

Definition 7. The orthogonal complement of the subspace U ⊂ V is the 
subspace U⊥ = {y ∈ V : �x, y� = 0, for all x ∈ U}. 
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2 YOUR NAME HERE 

Definition 8. A hyperplane Hx ⊂ V is the orthogonal complement to the 
one­dimensional subspace in V spanned by x ∈ V . 

Theorem 9. (Cauchy­Schwartz). For any x, y ∈ V , 
2�x, y� ≤ �x, x� · �y, y�, 

and equality holds if and only if the vectors x and y are linearly dependent. 

We will be interested in the linear mappings that respect inner products. 

Definition 10. An orthogonal operator in V is a linear automorphism 
f : V → V such that �f(x), f(y)� = �x, y� for all x, y ∈ V . 

Theorem 11. If f1, f2 are orthogonal operators in V , then so are the in­
verses f−1 and f−1 and the composition f1 ◦ f2. The identity mapping is 1 2 
orthogonal. 

Remark 12. The above theorem says that orthogonal operators in a Eu­
clidean space form a group, that is, a set closed with respect to compositions, 
containing an inverse to each element, and containing an identity operator. 

Example 13. Describe the set of 2 × 2 matrices of all orthogonal oper­
ators in R2, and check that they form a group with respect to the matrix 
multiplication. 

Now we are ready to introduce the notion of a reflection in a Euclidean 
space. A reflection in V is a linear mapping s : V V which sends some →
nonzero vector α ∈ V to its negative and fixes pointwise the hyperplane Hα 

orthogonal to α. To indicate this vector, we will write s = sα. The use of 
Greek letters for vectors is traditional in this context. 

Definition 14. A reflection in V with respect to a vector α ∈ V is defined 
by the formula: 

sα(x) = x− 
2�x, α�

α. 
�α, α� 

Theorem 15. With the above definition, we have: 
(1) sα(α) = −α and sα(x) = x for any x ∈ Hα; 
(2) sα is an orthogonal operator; 

2(3) s = Id.α 

Therefore, reflections generate a group: their compositions are orthogonal 
operators by Theorem 11, and an inverse of a reflection is equal to itself 
by Theorem 15. Below we consider some basic examples of subgroups of 
orthogonal operators obtained by repeated application of reflections. 

Example 16. Consider the group Sn of permutations of n numbers. It 
is generated by transpositions tij where i =� j are two numbers between 1 
and n, and tij sends i to j and j to i, while preserving all other numbers. 



�

3 REFLECTIONS IN A EUCLIDEAN SPACE 

The compositions of all such transpositions form Sn. Define a set of linear 
mappings Tij : Rn → Rn in an orthonormal basis {ei}i

n 
=1 by 

Tijei = ej ; Tijej = ei; Tijek = ek, k =� i, j. 

Then, since any element σ ∈ Sn is a composition of transpositions, it defines 
a linear automorphism of Rn equal to the composition of the linear mappings 
defined above. 

(1) Check that Tij acts as a reflection with respect to the vector ei − ej ∈
Rn . 

(2) Check that any element σ of Sn fixes pointwise the line in Rn spanned 
by e1 + e2 + . . . en. 

(3) Let n = 3. Describe the action of each element (how many are 
there?) of S3 in R3 and in the plane U orthogonal to e1 + e2 + e3. 
Example 13 lists all matrices of orthogonal operators in R2. Identify 
among them the matrices corresponding to the elements of S3 acting 
in U . Check that the product of two reflections is a rotation. 

Example 17. The action of Sn in Rn described above can be composed 
with the reflections {Pi}n

i=1, sending ei to its negative and fixing all other 
elements of the basis ek, k = i. 

(1) Check that the obtained set of orthogonal operators has no nonzero 
fixed points (elements x ∈ Rn such that f(x) = x for all f in the 
set). 

(2) How many distinct orthogonal operators can be constructed in this 
way for n = 2 and n = 3? 

(3) In case n = 2, identify the matrices of the obtained orthogonal oper­
ators among those listed in Example 13. 

Remark 18. The two examples above correspond to the series An−1 and 
Bn in the classification of finite reflection groups. 


