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Let V be a Euclidean space, i.e. a real finite dimensional linear space
with a symmetric positive definite inner product (, ).
We recall that a root system in V' is a finite set A of nonzero elements of

V such that
(1) A spans V;
(2) for all & € A, the reflections
2(8, )

(@, a)

sa(B) =0 —

(07

map the set A to itself;
(3) the number % is an integer for any o, 3 € A.

A root is an element of A.
Here are two examples of root systems in R?:

Example 1. The root system of the type A1 ® Ay consists of the four vectors
{£e1, £ea} where {e1,ea} is an orthonormal basis in R2.

We note that condition (1) is satisfied because {ej,es} spans R2. Also,
since (+e1,xep) = 0 it follows that s.,(ej) = s_¢;(ej) = €; and s¢,(—e¢;) =
5_¢;(—ej) = —ej fori # j. Similarily, (e;,e;) = 1 and (e;, —e;) = —1
give that s, (e;) = s—¢,(€;) = —e;, and s, (—e;) = s—¢,(—ei) = €;,. Thus,
conditions (2) and (3) are also satisfied. For a sketch of A;® Ay, see Figure 1
on page 6.

Example 2. The root system of the type Ao consists of the siz vectors
{ei —ej}iz; in the plane orthogonal to the line e1 + e + ez where {e1, ez, e3}
is an orthonormal basis in R3. These roots can be rewritten in a standard
orthonormal basis of the plane for a more illustrative description in R2.

We choose, as our standard orthonormal basis for the plane, vectors {i, j}
such that i = ea — ey and for d = (e3 —e1) + (e3 — e2), 7 = |i|/|d] - d =
(2e3 — ea — e1) /V/3. Tt is easy to verify that (i, j) = 0. Further, we choose as
our unit length |i| = |j| = v/2. Then, all the roots o € A can be represented
as a = cos(nm/3)-i+sin(nr/3)-j forn =0,1,2,3,4,5. That is, all the roots
lie on a unit circle and the angle between any two such roots is an integer
multiple of 7/3. E.g. for n = 1 we obtain a = cos(w/3) - i + sin(n/3) - j =
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%'Z’+§-j:%'(62—61)4—@'%(263—62—61)263—61 € A. Other
cases can easily be verified. For a sketch of As, see Figure 2 on page 6.

Since for any a € A, —« is also in A, (see [1], Thm.8(1)), the number
of elements in A is always greater than the dimension of V. The example
of type Ay above shows that even a subset of mutually noncollinear vectors
in A might be too big to be linearly independent. In the present paper we
would like to define a subset of A small enough to be a basis in V', yet large
enough to contain the essential information about the geometric properties
of A. Here is a formal definition.

Definition 3. A subsetI1 in A is a set of simple roots (a simple root system)
in A if
(1) II is a basis in V;
(2) Each root € A can be written as a linear combination of the ele-
ments of I with integer coefficients of the same sign, i.e.

ﬁ:Zmaa

acll
with all mq > 0 or all my, < 0.

The root 3 is positive if the coefficients are nonnegative, and negative oth-
erwise. The set of all positive roots (positive root system) associated to 11
will be denoted AT .

We will now construct a set II; associated to an element ¢ € V and a root
system A, and show that it satisfies the definition of a simple root system
in A.

Let A be aroot system in V', and let ¢ € V be a vector such that (¢, a) # 0
for all « € A. Set

Af ={a€A:(ta)>0}.
Let Ay = {—a,a € A/}

Remark. It is always possible to find t € V such that (t,a) # 0 for any
aeA.

We note that A has a finite number of elements and thus there is only
a finite number of hyperplanes H, such that for any ¢ € H,, (t,a) = 0.
Furthermore, since dim H, = dimV — 1 it is clear that (J,ca Ha cannot
span V and thus we can always find ¢ € V such that (t,a) # 0 for any
aeA.

Remark. A = A?‘ UA; .

We know that (t,a) # 0 for any o € A. Also, for & € A necessarily
—a € A. Since, (t,—a) = —(t,«) it must be that either (¢,a) > 0 or
(t,—a) >0, and a € A] or @ € A; respectively. Thus, A UA; = A.

Definition 4. An element o € A;r is decomposable if there exist 3, € A?’
such that o = 3+ . Otherwise o € A} is indecomposable.
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Let IT; C A} be the set of all indecomposable elements in A
The next three Lemmas prove the properties of A;r and II;.

Lemma 5. Any element in A can be written as a linear combination of
elements in II; with nonnegative integer coefficients.

Proof. By contradiction. Suppose v is an element of A for which the
lemma is false. Since A; is a finite set we can choose such a v for which
(t,7) > 0 is minimal. Since v € A; but v & II;, v must be decomposable.
Hence, v = a + (§ and (t,v) = (t,a + 3) = (t,a) + (t,F). Furthermore,
since a, 3 € A, (t,a) > 0 and (t,3) > 0 it must be that (t,7) > (t,a)
and (t,7) > (t,5). By the minimality of (¢,7) this Lemma must then hold
for @ and 3. However, then it must also hold for v = « + 3, which is a
contradiction. Thus, such a v cannot exist and the lemma holds. ([

Lemma 6. If o, € II;, a # 3, then («, 5) <O0.

Proof. By contradiction. Suppose that («, 3) > 0. Then by Theorem 9(1)
in[lla—pf € Aora—p =0 Wedo not consider the latter case since
then o = 3. However, considering a« — 3 = v € A for a,3 € II;. Then,
v € Af or v € A; . In the first case we find that o = v + 3. However, « is
indecomposable in A;F and we have a contradiction. In the latter case, since
then —y € A;", we find that 3 = —y+a. However, 3 is also indecomposable
in A} and again we have a contradiction. Hence, the Lemma holds. O

Remark. If we consider a euclidean space with a standard dot-product for
(a, B) = |a||Blcos(p) < 0 it is clear by previous lemma that the smallest
angle ¢ between the vectors satisfies w/2 < ¢ < 7.

Lemma 7. Let A be a subset of V such that
(1) (t,a) >0 for all v € A;
(2) (o, 8) <0 for all o, 8 € A.

Then the elements of A are linearly independent.

Proof. By contradiction. Suppose that the elements of A are linearly de-
pendent. Then for o; € A we can form ) ¢;a; = 0 such that not all ¢; = 0.
Since some ¢; > 0 and also some ¢; < 0, we split the linear combination into
two sums with all positive coefficients and obtain ) mgf —>_ n.,y = 0 with
B,v € Aand all mg,n, > 0. We then denote A = > mgf =) n,7y and con-
sider (A, A\) > 0 (by definite positive property of inner product). Then also
AN = (X mgB,Yon7) = SomsYon, (3,7). However, since (8,7) < 0
by initial assumption and all mg,n, > 0 we obtain that (A, A) < 0. Thus
(A, A) = 0 and necessarily A = 0. If we then consider (A1) = (O mpp,t) =
>-mg(B,t) = 0 and note that by initial assumption (¢,a) > 0, it must
be that all mg = 0. Similarily for m.,. Hence, all ¢; = 0 and we have a
contradiction. Thus, the elements in A are linearly independent. O

Now we are ready to prove the existence of a simple root set in any
abstract root system.
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Theorem 8. For any t € V such that (t,a) # 0 for all « € A, the set
II; constructed above is a set of simple roots, and A;“ the associated set of
positive roots.

Proof. We know by Lemma 5 that every element in Af can be written
as a linear combination of elements in II; with non-negative coefficients.
Accordingly, all elements in A, can be written with non-positive coefficients.
Since A UA; = A, condition (2) is satisfied. Furthermore, for any a, 3 €
IT; we have (o, 3) < 0 by Lemma 6. Since by construction (¢, a), (¢t,5) > 0
we find by Lemma 7 that all elements in II; are linearly independent. Noting
that every element of A can be written as a linear combination of elements
of II; and since, by definition, A spans V', we conclude that Il; is a linearly
independent set that spans V' and thus it is a basis, satisfying condition
(1). O

The converse statement is also true:

Theorem 9. Let I1 be a set of simple roots in A, and suppose thatt € V
is such that (t,a) > 0 for all o € II. Then II = 1I;, and the associated set
of positive roots AT = Af.

Proof. Given t as above, we define A/ as before. It is easy to see that
AT C A} since AT is positive with regards to IT (i.e. any a € AT is a
linear combination of elements of IT with non-negative coefficients) and II
is positive with regards to ¢ (i.e. (t,a) > 0 for all o € II). Also, similarily
A~ C A;. However, A = At UA™ = A UA; . Therefore, the number of
elements in AT is equal to the number of elements in A;” and they coincide.
Furthermore, II is a set of simple roots, i.e. it is a basis in V and its
elements are indecomposable. Therefore, II C II; where II; is defined as
all the indecomposable elements in Af . However, II; is also a basis and
therefore the number of elements in IT and II; coincide and thus IT = I1I;. [

Example 10. Let V be the n-dimensional subspace of R (n > 1) or-
thogonal to the line e; + ea + ... + en41, where {ei}?ill 18 an orthonormal
basis in R"1. The root system A of the type A, in'V consists of all vectors
{e; —€j}ixzj. Furthermore, Il = {e1 —ea,e2 —e3,...,en —€ny1} 5 a set of
simple roots, and AT = {e; — e }i<; - the associated set of positive roots in
A.

In order to show that all elements in A" can be represented by elements
of IT with non-negative coefficients we consider (e; — e;)i<; = (e; — €i41) +
-+ (ej—1—ej). Also, for any 8 € A~ = {e; —e;}j<; we can simply take the
corresponding o € AT s.t. —a = —(e;—¢€j)ic; = (ej—€;)i<j = 3 and all the
coefficients will be non-positive. Since {e;—e;}icjU{e;—€;j}j<i = {ei—e;}izj
condition (2) is satisfied.

We note that, by above, any element of AT, and thus A™, can be repre-
sented as a linear combination of elements of II. Also, A = AT U A~ and,
by definition, A spans V. It follows that II spans V. We then have n vectors
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that span an n-dimensional space. They must be linearly independent and
form a basis. Thus, condition (1) is satisfied. For a sketch of case n = 2, see
Figure 2 on page 6.

Example 11. The root system A of the type Cy, in V. =R" (n > 2) consists
of all vectors {£e; £ e;j}iz; U{£2e;}, where {e;}?_; is an orthonormal basis
in R™. Furthermore, I1 = {e1 — ea,e3 — €3,...,en_1 — €n,2e,} is a set of
simple roots, and AT = {e; £ e;}icj U{2e;} - the associated set of positive
roots in A.

In order to show that all elements in A' can be represented as a linear
combination of elements of II with non-negative coefficients we recall that
(ei — ej)i<j = (62' — 6,‘4_1) R (ej_l — ej). Also, 2€j = 2(€j — €j+1) +
cee 2(6n_1 — en) + 2e,. Finally, (ei + €j)2‘<j = (62‘ — ej)i<j + 2€j using
the two previous formulas. Multiplying these formulas by —1 we obtain the
elements of A~ with all non-positive coefficients. Noting that A = ATUA™
we see that condition (2) is satisfied. Condition (1) for simple root systems
is satisfied by the same argument as in the previous example. For a sketch
of Cs, see Figure 3 on page 6.

Example 12. We let V = R? and recall from [1], that for any two roots
a,B € A, n(a,B) - n(B,a) = 4cos?(¢), where n(a, ) = 289 and ¢ is

(o)
the angle between o and (3. Using Lemma 6 we can find all the angles
between simple roots in R? and also their relative lengths. Furthermore, in
accordance with Theorem 9, we can define the set of all elementst € V' such

that II; = 11 for a given 1. This set is the dominant Weyl chamber C'(A,II).

Let us assume that the root system A is reduced, that is for any a € A,
2ac ¢ A. We have the natural constraint that n(a, 8) - n(8, ) = 4 cos?(¢) <
4. Also, by Lemma 6 for any «,5 € II, (o, 3) = |af|B|cos(¢) < 0 and

necessarily 90 < ¢ < 180. Then, by [1] we know that for such «, 3, n(a, ) =
2(B,0) _ 2|ﬁ|l‘a\|0208(¢) _ 98]

o) ﬁcos(d)) =0,—1,—2,—3 or — 4. By our formula, we
obtain n(a, 8) - n(3,a) = 4cos?(¢) = 0,1,2 or 3, and consider the possible
combinations that satisfy this relation. We exclude 4, since in that case «
and § are collinear and such a II could not form a basis, as required. To

lal _ 2cos(¢p) _ f\/40052(¢>).

further illustrate these relations, we can write Bl = nf) =  n@pd)

and, ¢ = 180 — cos™ ! (%\/n(a,ﬁ) -n(f, a)). The results are tabulated in

Table 1, page 6.

Figures 1, 2 and 3 sketch the relevant rootsystems and illustrate the dom-
inant Weyl Chambers for all the above mentioned cases. In each case a
set of simple roots is denoted by thick arrows. The associated regions for
Weyl Chambers are obtained from constraint C(A,II) = {t € V : (t,a) >
0 for all « € IT}.
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Nap | Npa | 4cos’(9) | ¢ | 3| Intype
0 0 0 90 — | A1 0 A
1] -1 11120 1 Ay
—-1] -2 21135 | V2 C
—-1| -3 31150 (V3| Go

Table 1:

Possible relations between simple roots

Weyl Chamber
t

A 4

Weyl chamber

t
120°

A

Figure 1:

Root system: A; & Ay

A

Weyl Chamber

Figure 3:
Root system: Cs

A 4

60°

Figure 2:
Root system: As

A4
Figure 4:
Root system: Go



