ABSTRACT ROOT SYSTEMS

MATTHEW HERMAN

Let V be a Euclidean space, that is, a real, finite-dimensional vector space
with a symmetric, positive-definite inner product (, ). Recall the definition
of a reflection in V' from [1]:

Definition 1. A reflection of a vector £ € V with respect to a vector @ € V'
is defined by the formula

[\)

(Z,d)

% 3.
(@, a)

sa(@) =17~

We can now define an abstract root system in a Euclidean space.

Definition 2. An abstract root system in V' is a finite set A of nonzero
elements of V' such that

(1) A spans V;
(2) for all @ € A, the reflections

2 7 2 57 a
salf) = - 25la
map the set A to itself;
2(6, @)

(3) the number is an integer for any @, € A.

— =

(@, a)

A root is an element of A.

We will begin by considering some examples of root systems.

Example 3. Let V be the following subspace of R"*!, n > 1:

n+1 n+1
(1) V:{Zaié'i, with Za,:o},
=1 =1

where {&}"1! is an orthonormal basis in R**!, and all a; € R.

Claim. The set A = {€ — €;,1 # j} is an abstract root system.
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Proof. We must first show that A spans V. Construct A C A where
A={éy—¢€1,65—¢€1,8 —€1,...,6, —€1,Ent1 —€1}.
If we show that A spans V', then A necessarily spans V as well.

A vector U € V can be written as

(2) U= a1€] + ag€s + -+ + an€py + Ap41€n41
where

(3) ap+az+ -+ a,+ap1 =0.
Rewrite (3) as

(4) a1 =—(ag +az+ - +ap+ant1)

and substitute (4) into (2) to get

(6) U= —(ag+az3+---+ap+apt1)€i +a2€s + -+ ap€y + an16p41 -
We can then simplify (5):

(6) U=az(ér—€1)+az(€—¢€1)+-+an(€y —€1)+ ant1(€np1 — €1).
Equation (6) clearly shows that any 0] € V can be written as a linear com-

bination of the elements of A. Hence, A spans V, and therefore A spans
V.

Next, we must show that for any a, 5 € A, the reflections s&(g) map the
set A to itself. Take @ = ¢€; — €; and 8 = €, — ép,, where 1 # j and k # m.
Apply the reflection:

(7) g (€ — €m) = €k — € — @ .67 (& — &)

By the symmetry and bilinearity of the inner product, we can simplify (7)
as follows:

(8)  seg—¢;(€k — €m) = €k — Em —

Since {&; }71! is an orthonormal basis, we know that (&, €;) = 1 and (¢}, &) =

0 if 7 # j. We can simplify the fraction in (8). The denominator is clearly
2, which cancels the 2 in the numerator. Hence,

Se—e; (€ —€m) = € — &€m — [(€k, €)
(9) _<€ka'§]> - <€m,.§2>+<€m,€]>] (gl_gj)

It therefore follows that

(&, — & ifi=kj=mori=m,j=k

€ —€m fi#k#j#mFE1
iz = € —€m ifi=kj#m

(10) Sei_Ej(ek €m) = & —& ifi=m,j#k

€ —ém ifi#m,j=k

e, —¢€ ifj=m,i#k
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All possible cases in (10) are the difference of two distinct elements of the
orthonormal basis, which is exactly the definition of elements of A, so A is
invariant under reflection and the second property is satisfied. In addition,
for all cases the denominator of the fraction in (8) is 2, exactly canceling
the 2 in the numerator. The sum of the inner products in the numerator is
a combination of Os and 1s, so it is always an integer. Thus, the fraction

is always an integer, which satisfies the third condition. O

Root systems as defined in example 3 are of the type A,. We will now
consider the geometry of A; and As.

For n = 1, V is the subspace of R? where V = {ai(¢] — &)|a; € R}.
Thus, A = {€; — €y, — €1}. The standard basis is orthonormal, so we
can write € = (1,0) and €5 = (0,1). As a result, A = {(1,-1),(—1,1)} as
depicted in figure 1.

FiGure 1. A; Abstract Root System
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Ifn =2,V = {a16) +asé>+ a3 | a1 +az +az = 0} is a subspace of R3. Tt
is clear that A = {é'l — 52, éi — 53, 52 - 53, 52 - 51, 53 - 51, 53 - 52} Using the
standard basis in three-space, €1 = (1,0,0), €& = (0,1,0), and €5 = (0,0, 1),
we observe that

A= {(17 _170)7 (1707 _1)7 (07 L, _1)7 (_17 L, 0)7 (_1707 1)7 (07 -1, 1)} )

which is shown geometrically in figure 2. If we connect the roots of Az, we
see that we get a regular hexagon of side length v/2, as shown in figure 3.

Use of the standard basis is the simplest way to visualize A1 and As, yet
any orthonormal basis could have been chosen in each case.
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FIGURE 2. A Abstract Root System

A
v

FIGURE 3. Ay Abstract Root System (Viewed as a Polygon)

Example 4. Let V be the space R" such that n > 2 with an orthonormal
basis {€;}1" ;.

Claim. The set A = {£¢; = €;,i # j} U{xé} is an abstract root system.

Proof. The set A clearly spans V since it contains the orthonormal basis
{€;}1,. We must next show that for all &, [ € A, the reflection sz(f) € A.
Define {31}7:1 = {é;}7_, where all €; = B; and let 5n+1 = 0. We can now
write A as A = {£b; + bj,i # j}.

Take & = :I:I%:I:B} and 5 = :tgk:tgm, such that 7 # 5 and k # m. We must

show that s&(g) € A for all @ § € A. Begin by expanding the equation for
the reflection:

(11) s

- oo 2dby kb, b £ b
i g (Eby £ b)) = £by, £ by — (i 2 b, b1 £ b;)
B +b; £ by,

I (b, + ).
ibl_ibﬁ( i % b;)
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We will first consider the fraction in (11). By the bilinearity of the inner
product and by the orthonormality of the b;, we can simplify the denomina-
tor as follows:

(£b; £ by, £b; £ b;) = (£by, £b;) + (£b;, £b;) +

= 1+0+0+1
= 2.

This 2 in the denominator cancels the 2 in the numerator. We are now left
with

(£bg & byn) = £bg & by — (Fby, = by, £b; £ b;) (£b; £ b)) .

(12) S 45,48,
Finally, simplify the remaining inner product.

(igk + gm, :|:l_7;' + [;}) = <igk, :|:(_)'Z> + (:l:gk, igj> +
(13) (b, £b;) + (b, b))

It therefore follows that
:ng:FI;j ifi=kj=mori=m,j=k
+bp +by, fitk#£j#+mFAd
. ) = +by T by ifi=Fk,j#m
+bib; " +bp Fb; ifi=m, £k
+by, Fb; fi#£m,j=k
| b F b ifj=m,i#k

All 6 cases in (14) are elements of A, so the second property of an abstract

root system is satisfied. Furthermore, all the possible cases in (14) indicate

that the inner product in (13) can only be 0, £1, or £2. Hence, the fraction
2(@,B)  2(tby + by, £b; + b))

?
(@, @) (£b; £ bj, +b; + b;)
must always be an integer. As a result, the set A = {£¢&;+¢€;,7 # j}U{=£e;}
is an abstract root system. O
We call this type of abstract root system B,. Suppose n = 2. In this
case, V = R? and
A ={é + €y, €| — &, —¢ + &, —€ — é,€1,—€1,E, —E2}.

We will once again choose the standard basis for R? where &; = (1,0) and
é = (0,1). Hence,

A= {(17 1)7 (17 _1)7 (_17 1)7 (_17 _1)7 (17 0)7 (_17 0)7 (07 1)a (07 _1)} ’
which is depicted graphically in figure 4.
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FIGURE 4. Bs Abstract Root System

3

We will now consider the sizes and further classifications of abstract root
systems. We begin with a simple definition.

Definition 5. An abstract root system is reducible if it can be represented
as a disjoint union of two abstract root systems A = A’ UA”, and each ele-
ment of A’ is orthogonal to each element of A”. We say that A is irreducible
if it admits no such decomposition.

This definition motivates us to test our familiar root systems A, and B5
to determine whether they are reducible. It is clear from figure 2 that no
root system Ay, of type Ay is reducible since no two vectors in any A4,
are orthogonal, and so there cannot possibly be two smaller root systems

'1,0 A%, C Aa, where each element in A’; orthogonal to each element in
n

Ao

Now consider root systems of type By. From figure 4, it is equally obvious
that there exists no reducible root system Ap, of type Bs. In this case, each
of the eight vectors in Ap, is orthogonal to only one of the other vectors in

in Ap,. Hence, we cannot find two sets Ay and A% that are orthogonal
to each other.

An example of a reducible root system in R? is A; @ A;, which is the union
of two A; root systems. Suppose A 4,44, is an abstract root system of type
A1 @ Al. That iS, AAl@Al == {51, —51,52, —52}. Let AIAI®A1 = {51, —51}

and A} o4, = {€2, —€2}. It is obvious that these two sets are orthogonal.

To further classify abstract root systems, we will prove some elementary
theorems about them.
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FIGURE 5. A; & A; Abstract Root System

'

0.5

-0.5

Ly

Theorem 6. Let A be an abstract root system in V.

(1) If @ € A, then —d € A.

(2) If @ € A and :I:%d' is not in A, then the only possible elements of
AU {0} proportional to & are +@&, +2@, and 0.

(3) If & is in A andﬁEAUﬁ, then

. 253.a
(15) n(d, f) = B 0 11 49 £30r 24,
(a, a)

and £4 can only occur zfﬁ = +24a.

Proof. (1) Consider

(16) sa(d) = a -

By the definition of an abstract root system, the reflections map the
set A to itself. Hence, if @ € A, then —a@ € A.
(2) To prove the second property, we will use the fact that n(a, E) must
be an integer. Hence, if k € R,
2(a, ka)

M € 7Z and ———. € 7.
(@, ) (hai, k)
By the properties of the inner product, it follows that 2/k and 2k are
both integers. We know that either £ = 0 or |k| > 1/2 for 2k € Z.
We also know that 2/|k| can only be an integer larger than 4 if
|k| < 1/2. Hence, it suffices to find the k that satisfy the equation
2/k = ¢, where ¢ = {1, £2, £3, +4}. We can rewrite this equation
as k = 2/c to see that k = {£2, £1,£2/3, £1/2}. Reject k = £2/3,
since 4/3 ¢ Z, and k = £1/2 by the statement of the theorem. Con-
sequently, the only possible elements of A U {6} proportional to &
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are +@, £2@, and 0.

(3) The third property is proved using the Cauchy-Schwarz inequality,

which states that
(B,ay <llall - 18] -

We can rewrite (17) as

-

(@) < (@@ (3,412,
Squaring both sides we notice that
(B.a)* < (@) (B, B).
By the bilinearity of the inner product,
(.a@) (@ p) < (a@a) (B.5).
It therefore follows that

Once again, the fractions
28, & 2(d
<ff,ix) and 2E:P)
<Oé, Oé) <B7 /6>
must be integers. When taken together, their product must be less
than or equal to four, so each of these fractions can only be 0, £1,

+2, +3, or £4.
Suppose that

2(, d)

(a@,a)
In this case, equality holds in the Cauchy-Schwarz inequality, so &
and ﬁ are proportional. In addition, by (17),

=,

2(d, B)

(B,8)
As a result, 2(3,@) = 4)@)J? and 2(a, B) = 2081, so 1] = 2/4].
Since @ is proportional to 3, it is clear that 8 = +2a.

==+4.

O

Property (3) of theorem 6 limits the magnitude of n(@, 5). This leads us

to consider the possible values of n(a, E) for the familiar, two dimensional
root systems of type Ay, Bo, and A; & Ay. Brute force calculations show

that in each of these three cases, n(d, ) can only be 0, £1, or 2. We
must now try to find abstract root systems in V' = R? which allow n(&, 3)
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to equal £3 or £4. To accomplish this goal, we must first prove another
theorem.

Theorem 7. Let A be an abstract root system in V.

(1) If @ and B are in A, and (d, B_') > 0, then & — f3 is a root or 0. If
(@, ,g) <0, then @+ f3 is a root or 0.

(2) Let @ € A and f € AU{0}. If f+nd, B+ (n+1)d@ € AU{0}, then
B+ (n+1)a@ must also be in AU {0}.

Proof. (1) Consider the following two reflections:
(19) sa(f) = F-n(@pa
(20) s5(@ = @-n(fap

For @— 3 to be a root, it suffices that n(ﬁ_' a) =1 or n(a, B) = 1. For
@+ 3 to be a root, it also suffices that n(5, @) = —1 or n(&, f) = —1.

n(d, ,g) n(,g, @)| < 4. Hence, the following are

the possible values for n(d, 5) and n(,g, a):

By equation (18),

7, ) | n(B, a)
+1 [ +1,+£2,+3,+4

+2 | £1,+2
+3 | +1
+4 |1

=,

When n(&, 5) = 2 and n(3, @) = £2
7

(@, ,E)‘ - ‘n(ﬁ, a)‘. Hence

(a,d) = _') We know by the previous theorem that & and g

are proportional. Thus, 5 must be £@&. In every other case, either
n(d, 5) or n(,g, @) must be 1. If (&, E) > 0, then n(a, 5) > 0 and
n(B,&) > 0. Therefore, the reflections in equations (19) and (20)
yield either B-dGora—p If (a, 5) < 0, then n(d, 3) < 0 and
n(,g, @) < 0. Now, these reflections yield @ + ﬁ

(2) We will prove the second statement by contradiction. Suppose that
B+nd, B+ (n+2)a@ec AU{0}, but B+ (n+ 1)@ € AU{0}. Hence,
we assume that there is a gap in the set of elements of A U{0} of the
form 5+ na. We know that & € A, so by the first part of theorem
7, either

—

(21) B+(n+2)d@—-a=F+@n+1)aeAU{0}
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if (6+ (n+2)@, &) >0, or
(22) B4+nd+d=p+(n+1)deAu{l}

if (E + nd,d) < 0. By simplifying these conditions, we observe
that §+ (n+ 1)@ € AU{0} if (B,@) > —(n + 2)(@, @) or (B,a) <
—n(@,d). These two conditions cover all possibilities for (d, E), S0
B+ (n+1)@ e AU{0}, which contradicts our original proposition.

O

We will conclude by taking advantage of the Euclidean geometry to de-
scribe the geometry of abstract root systems. Recall that for the standard
inner product in R”, the number (&, &) = ||@||? is the square of the length

of the vector. Hence, n(d, E) can be written as

(23) n(d, ) = 2+= cos ¢,
where ¢ is the angle between & and B_' Then we have

(@, B) - (B, @) = 4cos* .

By applying theorem 6, we can find all of the possible values for ¢, as shown
in the table below.

=,

n(@f) | n(B,a) (@, B) - n(B,a@)| | cos g 9

0 0 0 0 90°

+1 | 4+1,42,43,+4(1,2,3,4 1/2,1//2,4/3/2,1 | 60°,45°,30°,0°
+2 | 41,42 2,4 1/v2,1 45°,0°

+3 | £1 3 V3/2 30°

+4 | +1 4 1 0°

Consequently, the angle ¢ between two nonproportional elements of an ab-
stract root system can only be 30°, 45°, 60°, or 90°.

The relative lengths of any two vectors can also be predicted. Equation
(23) also implies that

Hlall
Hﬁl\

so we will now calculate all possible ratios ||5]|/||@|| and ||@/||B] of the
roots for a fixed angle ¢. The possible relative lengths are therefore those
values that satisfy both ratios, as shown in the following table.

n(B, @) = 0s ¢,
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¢ |G/ N4l L l&l1/118] | relative length > 1
30° | 1/v/3,3v3,v3,5V3 | v3,5V3,1/V3, V3 V3
45° | 1/v2,v2,3v2,2v2 | V2,1/v2,2V2, -1 V2
2v2
60° | 1,2,3,4 1,1/2,1/3,1/4 1
90° | 1/2,1,3/2,2 2,1,2/3,1/2 1,2

We now have all the tools we need to describe all possible root systems
in V = R?. We have already encountered three of them—A; @ A;, Ay, and
Bs. Recall that for A; @ Aq, 4 roots meet at 90° angles. For Ay abstract
root systems, 6 roots meet with 60° angles between adjacent roots, so the
only relative length they can have is 1. For By systems, 8 roots meet with
45° angles between adjacent ones, so the possible relative lengths are 1/1/2
for those vectors with 45° between them and 1 for those vectors with 90°
between them. If the relative lengths of vectors that intersect at 45° angles
in By is instead v/2, we have a fifth abstract root system, Cy. In effect, this
is just a rotated version Bs. If we superimpose the By and C5 root systems,
we get a fifth abstract root system in R? known as BCs. Finally, if we take
the angle between 12 adjacent roots to be 30° apart, we see that we get
relative length to be v/3 between adjacent roots and 1 between alternating
roots. We call this sixth root system Go. The root systems Cs, BCs, and
G5 are depicted below.

FI1GURE 6. Cy Abstract Root System

24
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FIGURE 7. BCy Abstract Root System

24
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FIGURE 8. G2 Abstract Root System
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No other root systems can possibly exist in R?. Thus, maximum number
of roots in any root system on R? is 12.
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