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A root system in a Euclidean space V with a symmetric positive definite 
inner product �, � is a finite set of elements Δ of V such that 

1. Δ spans V ; 

2. for every root α ∈ Δ and every β ∈ Δ, β− 2�β,α� α is a root. Moreover, �α,α�
every root has such an expansion; 

3. the number 2�β,α� is an integer for all α, β ∈ Δ. �α,α� 

If 2α �∈ Δ for all α ∈ Δ, the root system Δ is reduced. For every root system 
in V , there exists a simple root system Π ⊂ V , such that 

1. the elements of Π form a basis for V ; 

2.	 every root β ∈ Δ is a linear combination πi∈Π ciπi with every ci being 
of the same sign. 

If the coefficients ci for a root β are all nonnegative, the root is positive. 
Otherwise, it is negative. The set of positive roots in Δ is denoted as Δ+ . 

Definition 1 Let Π ∈ Δ be a simple root system in V , and let the elements 
of Π be enumerated as {αi}n where n is the dimension of V . The Cartan i=1 

matrix A is the square matrix given by 

Aij =
2�αi, αj� 

. 
�αi, αi� 
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It is obvious that this matrix is dependent on the enumeration of the ele­
ments of Π. However, the Cartan matrices of a root system with different 
enumerations of the simple roots are related by permutation matrices. To 
prove this, an important fact about permutation matrices is necessary 

Theorem 2 Let P ij be the identity matrix with rows i and j switched. For 
any square matrix B, the matrix B� = P ijB(P ij)−1 is B with rows and 
columns i and j switched. 

Proof: Because P ij is the identity matrix with rows i and j switched, 
the left­hand product P ijB is the matrix Br, which is B with rows i and 
j switched. The transpose (Br)� = B�(P ij)� is the transpose of B with 
columns i and j switched. Since P ij is a simple permutation matrix (i.e., 
it is only one row exchange away from the identity matrix), (P ij)−1 = 
(P ij)�. B�(P ij)−1Therefore, (Br)� = . Multiplying (Br)� on the left by 
the same P ij will again switch rows i and j. This results in the matrix B�� = 
P ij(Br)� = P ijB�(P ij)−1, which is the transpose of B with the i­th and 

P ijB(P ij)−1j­th rows and columns switched. Its transpose, B� = (B��)� = , 
is therefore B with the i­th and j­th rows and columns switched. 2 

With this theorem, it is now possible to relate the Cartan matrices given by 
different enumerations of the same reduced root system. 

Corollary 3 Let A be the Cartan matrix of a reduced root system (Π, Δ) 
with a fixed enumeration of the simple roots {αi}n and let A� be the Cartan i=1 

matrix of the same root system with the same enumeration of the simple 
P klA(P kl)−1roots, except that roots αk and αl are reversed. Then A� = . 

Proof: The Cartan matrix for the first enumeration is given by 

Aij =
2�αi, αj� 

. 
�αi, αi� 

For all entries (i, j), i, j = k and i, j = l, the Cartan matrix A�
ij = Aij. All 

entries Akj are given by 
2�αl,αj� , and the entries Alj, Aik, Ail are given in a �αl,αl�

similar manner. Thus, the entries of A� involving k are switched with those 
involving l and vice versa. Then A� is A with rows and columns i and j 

P ijA(P ij)−1switched. By Theorem 2, A� = . 2 
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Because any enumeration of a set of simple roots is related to any other 
enumeration by some finite number of permutations, the relationship between 
any two Cartan matrices for a root system is an isomorphism by the conjugate 
product of permutation matrices. 

Definition 4 Two Cartan matrices are isomorphic if they are conjugate by 
a product of permutation matrices. 

Here are some examples of Cartan matrices. 

Example 5 The Cartan matrix of the root system of type An as defined in 
Final Project 3 is the n×n tridiagonal matrix with 2’s on the main diagonal 
and −1’s on the upper and lower diagonals. 

Proof: Let the root system of type An be as defined in [3]. The simple 
n+1roots Π are enumerated as {ei − ei+1}i=1 so that there are n distinct simple 

roots. For any two roots ei − ei+1 and ei+1 − ei+2, the appropriate entry of 
A is 

2�ei − ei+1, ei+1 − ei+2�
. 

ei − ei+1, ei − ei+1� 
The numerator of that fraction is 

ei+1, ei+1�+ �ei+1, ei+2��ei, ei+1� − �ei, ei+2� − �

and since all of the e’s are orthonormal to each other and of length 1, the 
numerator reduces to −1. The denominator is 

ei − ei+1, ei − ei+1� = ei+1, ei�+ �ei+1, ei+1�� �ei, ei� − �ei, ei+1� − �

which reduces to 2 for the same reasons. Hence, the value of an entry directly 
above or below the diagonal in this Cartan matrix is always −1. The diag­
onal entries are always 2, because the inner products in the numerator and 
denominator are identical. All other entries are 0 because the inner product 
in the numerator involes no identical terms. Therefore, the Cartan matrix A 
of the root system of type An is given by 

0 i− j > 1,| |
Aij = −1 |i− j = 1,|

2 i− j = 0.| |

⎧ ⎪⎨ ⎪⎩
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An interesting fact about this Cartan matrix is that it is identical to the 
stiffness matrix of a system with n − 1 springs with unit spring constants 
and n unit masses. 

Example 6 Let the root system of the type B4 be defined as in [1]. The 
simple roots Π are {e1 − e2, e2 − e3, e3 − e4, e4}. The positive roots Δ+ are 

4ei ± ej}i<j ∪ {ei}i=1. The Cartan matrix is { ⎞⎛ ⎜⎜⎝ 

2 −1 0 0 
2 −1 0−1 

0 2 

⎟⎟⎠
. 

0 
−1

0
 −2


−1

2


�4 
Proof: These roots form a basis for R4 . For any vector v ∈ R4 = 

ciei, let c1 = b1, c2 = b2 − b1, c3 = b3 − b2, and c4 = b4 − b3. Thei=1 

sum then expands to b1(e1 − e2) + b2(e2 − e3) + b3(e3 − e4) + b4e4. It is 
clear, then, that the simple roots in B4 are a basis for R4 and thus they 
span it. Additionally, every δ ∈ B4 has an integral expansion in the sim­

4ple roots. Recall that B4 = {ei ± ej}i ei}i=1. Let each simple root =j ∪ {±
enumerated above be denoted by πi. The roots ei can be expressed as �4 

±
the sum �4 

j=1 πj. Therefore, the roots ±ei � ej can be expressed as the ± �4 sum ± k=1 πk + � l=1 πl. In this way, all roots are combinations of the 
simple roots with integer coefficients of the same sign. The positive roots 
are those with all positive coefficients in their expansion across the simple 
roots. Clearly every ei is a positive root, and thus every sum ei + ej, j = i is 
also a positive root. Because every simple root but the last one is identical 
to the simple roots of A4, the Cartan matrix is identical except in the last 
sub­diagonal entry, where it is −2. This is because the square of the length 
of e4 is half of the square of the length of e3 − e4. 

The properties of all Cartan matrices are summarized here: 

Theorem 7 Any Cartan matrix A of a root system (Π, Δ) has the following 
properties. 

1. every entry is an integer; 

2. all diagonal entries are 2; 

3. all off diagonal entries are non­positive; 
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4.	 Aij = 0 if and only if Aji = 0; 

5. there exists a diagonal matrix D with positive entries such that DAD−1 

is symmetric positive definite. 

Proof: 1. This is true by property 3 of the definition of an abstract 
root system [1]. 

2. Every entry Aii = 2�αi,αi� = 2. �αi,αi� 

3. Let	 αi and αj be two distinct simple roots. By property 3 of root 

systems, αi − 2�αi,αj� αj is a root αk. Since αi and αj are simple, and αk�αj ,αj 

is a linear combination of the two, property 2 of simple roots requires 
that the number 

2�αi,αj� is negative. �αj ,αj 

4. Suppose Aij = 0. Then �αi, αj� = 0. By the reflexivity of the inner 
product, �αi, αj� = �αj, αi�. Therefore, if the numerator of Aij = 0, 
the numerator of Aji must also be 0 and vice versa. 

|
= �αi, αi� 
1 
2 .
 Then DAD−1 

ij5. Let D = diag( α1 , α2 , ..., αn|) where αi| | | | | | =


1 
2

1 
2

Aij 
�αi,αi� 
�αj ,αj�
2�αi,αj�

1 

2�αi,αj� this product reduces to DAD−1 
ijBecause Aij = =. �αi,αi� 

which, by the reflexivity of the inner product, is clearly 1 
�αi,αi�
symmetric. 

2 �αj ,αj� 2 

Denote the j­th entry of the simple root αi in some basis 
The matrix B defined = 

bijof V as bij. by Bij gives a Cholesky
1 
2�αi,αi� 

factorization for A because B�Bij is the inner product of αi with the αj 

divided by the lengths of αi and αj. This is precisely DAD−1 . Because ij 

the simple roots form a basis for V , B is invertible. Thus A is positive 
definite. 

Example 8 There are 5 reduced root systems in R2: A1 ⊕ A1, A2, B2, C2, 
and G2: 

1. The root system A1 ⊕ A1 consists of {±e1, ±e2} so that the angle be­
tween the simple roots {e1, e2} is π and each simple root has unit length. 

2 

The off diagonal entries of the Cartan matrix must be 0 because the 
2 0 

simple roots are orthogonal. Therefore, the Cartan matrix is 
0 2 
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and since the Cartan matrix is already symmetric and positive definitie, 
the diagonalizing matrix is the identity matrix. 

2. The root system A2 consists of 6 vectors arranged in a hexagon­like 
fashion and the angle between the two simple roots is π , each of unit 

3

length. The Cartan matrix of this root system is thus 
2 −1 

and 
2−1 

since the Cartan matrix is already symmetric and positive definite, the 
diagonalizing matrix is the identity matrix. 

3. The simple roots of the root system B2 are {e1 − e2, e2}, resulting in 
3 and root lengths of 1 and 

√
2. Thus the Cartan matrix π 

4� 

is 
2 
−2 

� 
−1 
2 

. The diagonalizing matrix is therefore � � 

��√
2 0 

0 1 
. The 

2 

an angle of 

−
√

2 
product DAD−1 = −

√
2 2 

has determinant 2 so DAD−1 is 

symmetric positive definite. 

π 
4 

4. The simple roots of the root system C2 are {e2 − e1, 2e1}. Thus, the 
3 and their lengths are 

√
2 and 2. The Car­angle between them is 

tan matrix is 
2 
−1 

−2 
2 

and the diagonalizing matrix D is � � 

2 0 

0 
√

2 

2 −
√

2 
so that the product DAD−1 = −

√
2 2 

is symmetric positive 

definite. Note that the diagonalizing matrix for C2 is just 
√

2 times 
the diagonalizing matrix for B2. In that sense, these root systems are 
equivalent. 

5. The simple roots of the root system G2 have lengths 
√

3 and 1 and the 

π 
6

angle between them is 5 �√
3 0 

the diagonalizing matrix is 

2 −1 
. Therefore, the Cartan matrix is −3 

, 

, and the symmetric positive def­
0 1 

2 −
√

3

−
√

3 2

inite product of the two is . 

Theorem 9 A reduced root system is reducibile if and only if for some choice 
of a simple root system and some enumeration of the indices of the simple 
roots, the Cartan matrix is block diagonal with more than one block. 
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Proof: Suppose that a root system is reducible as Δ = Δ� ∪Δ�� so that any 
nδ� ∈ Δ� is orthogonal to any δ�� ∈ Δ��. Let the simple roots of Δ be {αi}i=1 

r nso that {αi}i=1 ∈ Δ� and {αi}i=r+1 ∈ Δ��. Then for any i ∈ {1, 2, .., r} and 
r + 1, r + 2, ..., n} (i.e., i and j represent roots from different parts j ∈ {

of Δ’s decomposition), Aij = 0. Then clearly A is block diagonal with 2 
blocks. If a root system is reducible into n orthogonal components, by the 
same argument, it will have n blocks. 

Now, assume that the Cartan matrix of a root system Δ is block diagonal 
rwith 2 blocks. Let the roots corresponding to the first block be {αi}i=1 and 

nthose in the second block be {αi}i=r+1. Assume α is a positive root in Δ. By 
theorem 7 of [2], α = a1 + a2 + ... + ak, where each ai is a simple root, and 
repetitions are allowed. Furthermore, each partial sum a1 + a2 + ... + ac is a 
root, for all c ≤ k. Let B be the c­th partial sum for α and let A be the next 
simple root in the sum for α. Then B and B + A are both roots. Theorem 
10 of [1] requires that for all n such that B + nA is a root or 0, there exists 

positive p and q such that −p ≤ n ≤ q and p − q = 2�B,A� . �B,B�
Suppose the roots that sum to B and A are in different blocks, meaning 

that �B, A� = 0 and p = q. Then if B + A is a root (n = 1 in the theorem 
from [1]), B − A must also be a root. However, this results in a root which 
is a sum of simple roots with mixed sign coefficients. This contradicts the 
definition of simple roots. Therefore, the only such p that does not result in 
this contradiction is p = 0. This means that in any expansion of a positive 
root in a root system whose Cartan matrix has 2 blocks, all of the coefficients 
for the set of simple roots in one orthogonal component must be 0. 

2 

If there is only one block, the root system is said to be irreducible. 

Theorem 10 The matrix D which diagonalizes the Cartan matrix of a root 
system is determined uniquely up to a scalar multiple on each block of A. 

Proof: For every pair αi and αj that are in different blocks, the entry Aij 

of the Cartan matrix is 0. Therefore, any diagonal matrix D symmetrizes 
such entries in the Cartan matrix A. For any matrix D� = diag(a1, a2, ..., an) 
that symmetrizes A, and any two simple roots αi and αj which are in the 

ai ajsame block, D�A(D�)−1 = Aij aj 
. Because D� symmetrizes A, Aij 

ai = Aji ai 
.ij aj 

aj αi
2 

2This reduces to ai = |αj |2 and finally to a2 = |
αj

|
2 aj . This implies that 

aj ai i|αi|2 | |
ai and aj are determined uniquely up to a scalar multiple by the relative 
lengths of αi and αj. 2 
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With this theorem, it is clear that for any irreducible root system, the matrix 
D gives the relative lengths of the roots. By definition, the entries of the 
Cartan matrix A give the angles between any two simple roots. Then, A and 
D completely characterize the simple roots. 

Corollary 11 Any Cartan matrix determines a set of simple roots uniquely 
up to a scalar multiple of an orthogonal transformation on each irreducible 
component 

Proof: From Theorem 10 it is clear that given a Cartan matrix A, there 
is a diagonalizing matrix D which is unique up to a scalar multiple in each 
block of A. Thus, A itself determines the relative lengths of some set of 
simple roots (up to a scalar multiple on each block). Additionally, every 
entry (i, j) of A gives the angle between αi and αj. So for each irreducible 
component of A, there is a unique root system. 

Example 12 The root system A1 ⊕ B2 has {e1, e2 − e3, e3} as simple roots. 
It’s Cartan matrix is ⎛ ⎞ 

2 0 0 ⎝0 2 −1⎠ 

20	 −2 

which is block diagonal with the Cartan matrix for A1 in the first block, and 
the Cartan matrix for B2 in the second. 
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