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REFLECTIONS IN A EUCLIDEAN SPACE 

PHILIP BROCOUM 

Let V be a finite dimensional real linear space. 

Definition 1. A function �, � : V × V R is a bilinear form in V if→
for all x1, x2, x, y1, y2, y ∈ V and all k ∈ R, 

x1 + kx2, y� = x1, y�+ k�x2, y�, and 

x, y1 + ky2� = x, y1�+ k�x, y2�. 

Definition 2. A bilinear form �, � in V is symmertic if �x, y� = y, x�
for all x, y ∈ V . A symmetric bilinear form is nondegenerate if �a, x� = 
0 for all x ∈ V implies a = 0. It is positive definite if �x, x� > 0 for 
any nonzero x ∈ V . A symmetric positive definite bilinear form is an 
inner product in V . 

Theorem 3. Define a bilinear form on V = Rn by �ei, ej � = δij , where 
nei}i=1 is a basis in V , and δij = 1 if i = j and δij = 0 if i = j. Then{

, � is an inner product in V . 

Proof. We must check that it is symmetric and positive definite: 
ei, ej � = ej , ei� = 1 if i = j and �ei, ej � = ej , ei� = 0 if i = j• � � � �
ei, ei� = 1. • �

Definition 4. A Euclidean space is a finite dimensional real linear 
space with an inner product. 

nTheorem 5. Any Euclidean n­dimensional space V has a basis {ei}i=1 
such that �ei, ej � = δij . 

Proof. First we will show that V has an orthogonal basis. Let {u1, ..., un}
be a basis of V , and let v1 = u1; note that v1 = 0, and so �v1, v1� = 0. 
Also, let v2 be given by the following: 

v2, v1�
v1.v2 = u2 −

�
v1, v1� 
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The vectors v1 and v2 are orthogonal for 

�v2, v1� = �u2 −
�u2, v1�

v1, v1� = �u2, v1� − 
�u2, v1� 

�v1, v1� �v1, v1�
�v1, v1� = 0. 

Note v1 and v2 are linearly independent, because u1 and u2 are basis 
elements and therefore linearly independent. We proceed by letting 

= uj −
�uj , vj−1�

vj vj−1 − ...− �uj , v1�
v1. �vj−1, vj−1� �v1, v1� 

Now, for j − 1 ≥ k ≥ 1, 

�vj , vk � = �uj , vk �− 
�uj , vj−1� −�uj , vk �

�v1, v1�
�v1, vk � = 0. 

�vj−1, vj−1�
�vj−1, vk �−...

�vk , vk �
�vk , vk �−...−�uj , v1� 

This equality holds by induction because �vi, vk � = 0 for i = j− 1, ..., 1 
and i = k, and the remaining negative term on the right­hand side 
cancels with the first term for i = k. We cannot write the equation for 
vj to give a linear relation between {u1, ..., uj } because this is a subset 
of a basis. Thus, {v1, ..., vj } are linearly independent. Continuing with 
induction until j = n produces an orthogonal basis for V . Note that 
all denominators in the above calculations are positive real numbers 
because vi = 0 for i = 1, ..., n. Lastly, when we define 

vi 
ei = , i = 1, ..., n, 

�vi� 

then �ei� = 1 for all i, and {e1, ..., en} is an orthonormal basis for V 
such that �ei, ej � = δij . � 

Below V = Rn is a Euclidean space with the inner product �, �. 

Definition 6. Two vectors x, y ∈ V are orthogonal if �x, y� = 0. Two 
subspaces U,W ∈ V are orthogonal if �x, y� = 0 for all x ∈ U, y ∈ W . 

Theorem 7. If U,W are orthogonal subspaces in V , then dim(U) + 
dim(W ) = dim(U + W ). 

Proof. Let {ei}n be an orthonormal basis of V . A subset of these i=1 
basis vectors will form a basis of U . Likewise, another subset of these 
basis vectors will form a basis of W . No basis vector of V can be a basis 
vector of both U and W because the two subspaces are orthogonal. We 
can see this by taking x to be a basis vector of U and taking y to be a 
basis vector of W . We now have 

�x, y� = δij 

We know this is zero, so x and y cannot be the same. Since this applies 
to all x ∈ U and all y ∈ W , the two subspaces share none of the same 
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basis vectors. We can then form a basis of U + W by taking the basis 
of U plus the basis of W . Thus, dim(U)+dim(W ) = dim(U + W ). � 

Definition 8. The orthogonal complement of the subspace U ⊂ V is 
the subspace U⊥ = {y ∈ V : �x, y� = 0, for all x ∈ U}. 

Definition 9. A hyperplane Hx ⊂ V is the orthogonal complement to 
the one­dimensional subspace in V spanned by x ∈ V . 

Theorem 10. (Cauchy­Schwartz). For any x, y ∈ V , 
2�x, y� ≤ �x, x� · �y, y�, 

and equality holds if and only if vectors x, y are linearly dependent. 

Proof. For all a and b in R we have, by positive definiteness: 

ax− by, ax− by� ≥ 0 

By bilinearity and symmetry this gives: 
2a �x, x� − 2ab�x, y�+ b2�y, y� ≥ 0 

We can now set a = �x, y� and b = �x, x� and cancel the first term: 

�x, x�(−�x, y�2 + �x, x��y, y�) ≥ 0 

If �x, x� = 0, then by positive definiteness, x = 0 and therefore �x, y� = 
0 as well. Thus the equality holds in this case. If �x, x� = 0, then it is 
positive and the theorem follows from the equality above. � 

We will be interested in the linear mappings that respect inner prod­
ucts. 

Definition 11. An orthogonal operator in V is a linear automorphism 
f : V → V such that �f(x), f(y)� = �x, y� for all x, y ∈ V . 

Theorem 12. If f1, f2 are orthogonal operators in V , then so are the 
inverses f−1, f−1 and the composition f1 ◦ f2. The identity mapping is 1 2 
orthogonal. 

Proof. Because an orthogonal operator f is one­to­one and onto, we 
know that for all a, b ∈ V there exists an x, y ∈ V such that x = f−1(a) 
and y = f−1(b). Thus, f(x) = a and f(y) = b. By orthogonality, 
�f(x), f(y)� = �x, y�. This means that �a, b� = �x, y� and thus we 
conclude that �f−1(a), f−1(b)� = �a, b�. 

The composition of f1 and f2 is �f1 ◦ f2(x), f1 ◦ f2(y)�. Because f1 is 
orthogonal, �f1 ◦ f2(x), f1 ◦ f2(y)� = �f2(x), f2(y)�. Because f2 is also 
orthogonal, �f2(x), f2(y)� = �x, y�. The identity map is orthogonal by 
definition and this completes the proof. � 
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Remark 13. The above theorem says that orthogonal operators in a 
Euclidean space form a group, i.e. a set closed with respect to compo­
sitions, contains an inverse to each element, and contains an identity 
operator. 

Example 14. All orthogonal operators in R2 can be expressed as 2 × 2 
matrices and they form a group with respect to the matrix multiplica­
tion. 

The orthogonal operators of R2 are all the reflections and rotations. 
The standard rotation matrix is the following 

cosθ −sinθ 
sinθ cosθ 

and the standard reflection matrix is the following 

cosθ sinθ 
sinθ −cosθ 

The matrices of the above two types form the set of all orthogonal oper­
ators in R2 . We know this because �Ax, Ay� = �x, y�. Thus, AT A = I 
and so det(A2) = 1 which implies det(A) = ±1. The matrices with 
determinants plus or minus one are of the two forms shown above. 

Now we are ready to introduce the notion of a reflection in a Eu­
clidean space. A reflection in V is a linear mapping s : V V which →
sends some nonzero vector α ∈ V to its negative and fixes pointwise 
the hyperplane Hα orthogonal to α. To indicate this vector, we will 
write s = sα. The use of Greek letters for vectors is traditional in this 
context. 

Definition 15. A reflection in V with respect to a vector α ∈ V is 
defined by the formula: 

sα(x) = x − 
2�x, α� 

α. 
�α, α� 

Theorem 16. With the above definition, we have: 
(1) sα(α) = −α and sα(x) = x for any x ∈ Hα; 
(2) sα is an orthogonal operator; 
(3) s2 = Id.α 

Proof. (1) Using the formula, we know that, 

sα(α) = α − 
2�α, α� 

(α). 
�α, α� 

Since �α,α� = 1, the formula simplifies to, �α,α� 

sα(α) = α − 2α, 
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and thus sα(α) = −α. 
For x ∈ Hα, we know that �x, α� = 0. We can now write, 

2(0) 
sα(x) = x−

�α, α� 
α, 

and so sα(x) = x. 
(2) By Theorem	 5, we can write any x ∈ V as a sum of basis 

vectors {ei}n such that �ei, ej � = δij . We can also choose i=1 
this basis so that e1 is in the direction of α and the others are 
orthogonal to α. Because of linearity, it suffices to check that 
�sα(ei), sα(ej )� = �ei, ej �. 

sα(ei) = ei − 
2�ei, α� 

α 
�α, α� 

If ei = α then it must be orthogonal to α. 

2(0) 
sα(ei) = ei − �α, α� 

α = ei 

If ei = e1 = α then by part one sα(e1) = −e1. We can now 
conclude that �sα(ei), sα(ej )� = It is easy to check �±ei,±ej �. 
that �±ei,±ej � = �ei, ej � = δij . 

(3) By the same reasoning as part two, it suffices to check that 
2sα(ei) = ei for any basis vector ei. Also from part two, we 

know that sα(ei) is either equal to ei or −ei. If sα(ei) = ei, 
2then ei = α and clearly sα(ei) = ei. If sα(ei) = −ei, then 

2sα(ei) = −(−(ei)) = ei and this completes the proof. 

Therefore, reflections generate a group: their compositions are or­
thogonal operators by Theorem 12, and an inverse of a reflection is 
equal to itself by Theorem 16. Below we consider some basic examples 
of subgroups of orthogonal operators obtained by repeated application 
of reflections. 

Example 17. Consider the group Sn of permutations of n numbers. It 
is generated by transpositions, tij where i = j are two numbers between 
1 and n, and tij sends i to j and j to i, while preserving all other 
numbers. The compositions of all such transpositions form Sn. Define 
a set of linear mappings Tij : Rn → Rn in an orthonormal basis {ei}n 

i=1 
by 

Tij ei = ej ; Tij ej = ei; Tij ek = ek , k = i, j. 
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Then, since any element σ ∈ Sn is a composition of transpositions, it 
defines a linear automorphism of Rn equal to the composition of the 
linear mappings defined above. 

(1) Tij acts as a reflection with respect to the vector ei − ej ∈ Rn .


Proof. We being with our definition of a reflection.


sα(x) = x− 
2�x, α� 

α. 
�α, α� 

2�x, ei − ej �
sei−ej (x) = x−

�ei − ej , ei − ej � 
(ei − ej ). 

Because of linearity, it suffices to check the following: 
(a)


sei−ej (ek ) = ek , k = i, j


(b)

sei−ej (ek ) = ej , k = i


(c)

sei−ej (ek ) = ei, k = j


The third item follows from the second by symmetry, so we

must only check the first two conditions outlined above. Note

that �ei − ej , ei − ej � = 2 because 

�ei−ej , ei−ej � = �ei, ei�−�ei, ej �−�ej , ei�−�ej , ej � = 1+0+0+1 = 2 �ei, ei−ej �−�ej , ei−ej � = 

and so our formula simplifies to 

sei−ej (ek ) = ek − �ek , ei − ej �(ei − ej ).


Suppose k does not equal i or j for condition (a).


�ek , ei − ej � = �ek , ei� = �ek , ej � = 0 + 0 = 0


sei−ej (ek ) = ek .


Suppose k equals i for condition (b).


�ei, ei − ej � = �ei, ei�−�ei, ej � = 1 + 0 = 1


sei−ej (ei) = ei − (ei − ej ) = ej . 

Thus, Tij does indeed act like a reflection with respect to the

vector ei − ej ∈ Rn . �


(2) Any element σ of Sn fixes pointwise the line in Rn spanned by

e1 + e2 + . . . en.
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Proof. The line described can be written as a variable times the 
sum of the basis vectors. 

c(e1 + e2 + ... + en), c ∈ R. 

In other words, the line is the set of points equidistant from 
each basis vector. Because vector addition is commutative, it 
matters not in which order the basis vectors are added. Since we 
know that elements of Sn simply switch basis vectors around, 
the line described remains unchanged. � 

(3) Let n = 3. There are six elements S3 in R3 . If we call the basis 
vectors x, y, z then the six elements are: Txy , Txz , Tyz , Txy Txz , Txy Tyz , Txx. 
There is a special plane U orthogonal to x + y + z such that 
Tij [U ] = U for all i and j. It can be said that U is closed un­
der transpositions, because any point in U remains in U after a 
transposition (although the point may be in a different place, it 
is still in the plane U). Because U is closed, it can be thought 
of as R2 and the elements of S3 correspond to the reflection and 
rotation matrices mentioned earlier in Example 14. Txy reflects 
the plane U through the plane x = y. Txz and Tyz reflect the 
plane U through the planes x = z and y = z respectively. These 
three transpositions correspond to reflections in R2 about the 
line where the two planes intersect. The other three elements of 
S3 rotate U about the line described above in part (2). Txy Txz 

rotates U 120 degrees clockwise. Txy Tyz rotates U 120 degrees 
counter­clockwise. Finally, Txx is a rotation by 360 degrees, 
also known as the identity map. 

Remark 18. Notice that the product of two reflections is a 
rotation. As seen above in the plane U , a transposition is a 
reflection, and the composition of any two transpositions is a 
rotation. 

Example 19. The action of Sn in Rn described above can be composed 
with the reflections {Pi}i

n 
=1, sending ei to its negative and fixing all 

other elements of the basis ek , k = i. 

(1)	 The obtained set of orthogonal operators has no identity ele­

ment.


Proof. If Tij Pk were an identity element, then Pk would have 
to be the inverse of Tij . However, Pk is its own inverse, so Pk 

must equal Tij . There is no transposition Tij that is equal to 
a reflection Pk because Tij acts as a reflection with respect to 
the vector ei − ej and Pk acts as a reflection with respect to the 
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vector ek . Since there are no zero basis vectors, ei − ej never 
equals ek . 

There is no overlap between the Tij ’s and the Pk ’s and thus 
there cannot be an identity element. � 

(2)	 Four distinct orthogonal operators can be constructed in this 
way for n = 2 and 18 can be constructed for n = 3. 

In R2 there exist two reflections; Px, Py , and two transposi­
tions; Txy , and Txx (the identity). These can be composed in 
2 ∗ 2 = 4 ways. 

In R3 there are three reflections and six elements of Sn, and 
these can be composed in 3 ∗ 6 = 18 ways. 

(3)	 Consider the case where n = 2. The operators correspond to the 
matrices of orthogonal operators in R2 as listed in Example 14. 
The operator TxxPx is a reflection about the y­axis. The opera­
tor TxxPy is a reflection about the y­axis. The operator Txy Px is 
a rotation counter­clockwise by 270 degrees. The operator Txy Py 

is a rotation counter­clockwise by 90 degrees. 

Remark 20. The two examples above correspond to the series An−1 

and Bn in the classification of finite reflection groups. 


