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Problem 1. 

(a) Given a finite dimensional linear space	 L and a subspace L1 ⊂ L 
we want to prove that there exists a subspace L2 ⊂ L such that 
L1 ⊕ L2 = L. Furthermore, we want to prove that the dimensions of 
all such direct complements to L1 coincide. 

Let dim L = l. We pick a basis {ei} l1 for L1 and note that i=1 
dim L1 = l1. We then use the basis extension theorem and extend 
the basis of L1 to the basis of L. Thus, {e1, . . . , el1 , el1+1 . . . , el} spans 

lL. Let L2 = span {ei}i=l1+1. Since, L1 ∩ L2 = 0 and L1 + L2 = L we 
note that L2 is a direct complement to L1. Furthermore, dim L2 = 
l − l1. 

2Let L2
� be a direct complement to L1 and {ei

�}i
l�

=1 be a basis for L�
2. 

We extend the basis of L� to L by using the basis vectors of L1. Thus, 2 

1, . . . , e
� , e1, . . . , el1 } spans L. Hence, it must be that dim L� ={e� l�	 2 
2 

l − l1. However, this is the same as dim L2. Thus, dimensions of all 
direct complements of L1 coincide. 

(b) Given	 F : L �→ M , we first show that ind F = dim(coker F ) −
dim(ker F ) is well defined. We note that since part (a) defined di­
rect complement only for finite dimensional spaces we restrict our 
attention to a finite dimensional M . 

Using the result from part (a) we find that coker F , a direct com­
plement to Im F ⊂ M , always exists and has a finite dimension. 
Furthermore, ker F also always exists and has a well defined dimen­
sion. We can then take dim coker F = c and dim ker F = k. Hence, 
ind F = c − k. We note that c is always a non­negative integer and 
k can be either a non­negative integer or infinity depending on the 
dimension of L. Thus, ind F is well defined. 

For finite dimensional M and L. Let dim M = m and dim Im F = 
i. Then dim coker F = m − i. Further, let dim L = l. Then 
dim ker F = dim L−dim Im F = l−i. Thus, ind F = (m−i)−(l−i) = 
m− l = dim M − dim L 
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(c) If dim M = dim L = n. Then ind F = 0 and also dim coker F = 
dim ker F . If ker F = 0 then also coker F = 0 and the system of 
linear equations always has a solution, while the system with a zero 
r.h.s has no nontrivial solution. 

Problem 2. 

We want to show that all triples of non­coplanar, pairwise distinct lines 
through zero in R3 are identically arranged. Let {e1, e2, e3} be a basis for R3 

and let vi = a1ie1 + a2ie2 + a3ie3 for i = 1, 2, 3 be direction vectors for three 
non­coplanar pairwise distinct lines in R3 . Further, let v� = a1

�
ie1 + a�i 2ie2 + 

a3
�
ie3 for i = 1, 2, 3 be the direction vectors for a second set of non­coplanar 

pairwise distinct lines in R3. For vi and vi
� to be identically arranged we must 

find a linear map f such that f(vi) = v� for i = 1, 2, 3. This is equivalent to i 
finding a matrix T such that T (aij ) = (aij

� ). Since the three lines are linearly 
independent we can invert the matrix of coefficients. Thus, T = (a�ij )(aij )−1 

and three such lines are identically arranged. 
To consider the arrangements of four such lines we note that direction 

vectors for three such lines span R3 and thus we express the direction vector 
for the fourth line as a linear combination of the first three. Namely, v4 = 

1v
� + b� 3v3. Further, T (v4) = b1T (v1) + b1v1 + b2v2 + b3v3 and v� = b� 1 2v

� + b� �
4 2 

b2T (v2)+b3T (v3). Hence, if we add a scaling factor to the first three direction 

vectors T (vi) = b
b

i 

�
i vi

� for i = 1, 2, 3 it follows that T (v4) = v� and thus all 4 
quadruples of such lines are identically arranged. 


