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JUHA VALKAMA 

Problem 1. 

Let L and M be finite dimensional linear spaces and let f : L �→ M be 
a linear map. We want to show that Imf and ker f are finite dimensional 
and that dim Im f + dim kerf = dim L. We assume that dim L = n. Let 
{bj } be a basis for kernel of f . By the Basis Extension Theorem we know 
that there are linearly independent vectors {ck } such that the ordered set 
ai} = {bj , ck } forms a basis for L. Since the total number of basis elements {

for L is finite, it must be that ker f ⊆ L is also finite dimensional. Thus, 
dim ker f = l ≤ n. 

Next we show that {f(ai)}n span Imf . We choose v ∈ Imf . Since i=l+1 � n ai} spans L, there exist scalars di such that v = f ( diai). Noting that � i=1 
f(ai) = 0, 1 ≤ i ≤ l, we have v =
{

i
n 
=l+1 cif(ai). Thus, {f(ai)}i

n 
=l+1 spans 

Imf . 
To verify the linear independence of {f(ai)}n we consider the linear i=l+1 �� n ncombination i=l+1 cif(ai) = 0. Then by linearity f i=l+1 ciai = 0. 

Since ai are linearly independent it must be that all ci = 0. Hence all 
n{f(ai)}i=l+1 are linearly independent and we can consider them a basis for 

Imf . This also confirms that Imf is finite dimensional. 
Hence, dim Imf + dim kerf = dim L. 

Problem 2. 

(a) {f ∈ L(V, V ) dim Imf = 0}|
This is a subspace. The defining condition of this subset is equiv­

alent to f = 0. Thus for all v ∈ V , f(v) = 0. By linearity, this is 
also true for any combination of such linear maps. 

Considering the matrix representation of this subspace of linear 
maps, we conclude that it is isomorphic to the subspace of zero ma­
trices. 

(b) {f ∈ L(V, V ) dim kerf = 0}|
This is not a subspace, unless dim V = 0. We prove this by con­

tradiction. Suppose v ∈ V. Then necessarily for f in the subset, 
f(v) = 0. Further, by linearity it must be that kf(v) = 0, k ∈ F. We 
pick k = 0 and then for any vector v ∈ V , the action of kf on v gives 
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0, independent of v. Thus dim ker kf =� 0. However, if dim V = 0 
then also dim ker f = 0. In this case V ⊆ {0} and necessarily f = 0. 

Formulated in terms of matrices, we can consider this subset of 
linear transforms isomorphic with the set of matrices with rank equal 
to the dimension of V . This is not a subspace since multiplication of 
any such matrix by 0 will result in a matrix that has rank less than 
the dimension of V unless the dimension of V is 0. 

(c) {f ∈ L(V, V ) dim Imf < dim V }.|
This is not a subspace, unless dim V = 1. We prove this by con­

ntradiction. Let dim V ≥ 2 and let {ai}i=1 be a basis for V. Fur­
ther, let fi(aj ) aj , for i = j and fi(aj ) 0, for i =� j. Then for 

Thus, dim Imfi = 1 < dim V . 
= = 

n 
i=1 ciai, fi(v) = ciai. However, v = 

n n( fi) v = v and dim Im ( fi) = n = dim V . For dim V = 1 i=1 i=1 
it must be that f = 0, dim Imf = 0 and proof follows as in part (a). 
We cannot have dim V = 0, since then dim Imf = dim V . 

We can consider this subset of linear transforms isomorphic to the 
set of matrices with rank less than the dimension of V . For dim V > 1 
we consider a subset of such linearly independent matrices of rank 
1 and note that the sum of these matrices may result in a matrix 
of rank dim V . In case dim V = 1 our subset is a subspace of zero 
matrices as described in part (a). 

Problem 3. 

� 

(a) We want to prove that there are no finite square matrices such that 
XY −Y X = I. By contradiction, suppose we could find such X and 
Y . Let X, Y, I ∈ Fm×m . Then trace (XY − Y X) = trace I = m. 
However, 

m

trace (XY − Y X) = (XY − Y X)ii 

i=1 
m m m

= (X)ik (Y )ki − (Y )ik (X)ki 

i=1 k=1 k=1 
m m

= (X)ik (Y )ki − 
i=1 k=1 

m m

(Y )ik (X)ki 

i=1 k=1 

= 0 = m 

Thus, it is impossible to find finite square matrices that satisfy 
XY − Y X = I. 

n(b) Let P = k . Thenk=0 ck x

d 
dx 

n n
k+1P = kck x k−1 and xP = ck x . 

k=0 k=0 
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Both of these maps are linear: 

nd d 
n

(aP + P �) = (a ck x k + c�k x k )
dx dx 

k=0 k=0 

d 
n� d 

n
k= a ck x k + c�

dx dx k x 
k=0 k=0 

d d 
= a P + P �

dx dx 

n n

x(aP + P �) = x(a ck x k + c�k x k ) 
k=0 k=0 
n n

k= ax ck x k + x c�k x 
k=0 k=0 

= axP + xP � 

We calculate the compositions of these two maps: 

d 
x P = 

d
(xP ) = 

d 
n

ck x k+1 = 
n

(k + 1)ck x k 

dx 
◦ 

dx dx 
k=0 k=0
� � � � n n
d d 

x P = x P = x kck x k−1 = kckx k .◦ 
dx dx 

k=0 k=0 

Thus by linearity � � n n

d
d 
x 
◦ x − x ◦ 

d
d 
x

P = (k + 1)ck x k − kck x k 

k=0 k=0 
n

k= ck x = I P = P 
k=0 

(c) We introduce the concept of matrices with infinitely many rows and 
columns. To define multiplication of two such matrices, we restrict 
our attention to matrices with finitely many non­zero elements on 
any given row or column. Then for any given row {aij }∞ there j=1 
exists a number Ni such that aij = 0, for j > Ni. Similarily for 
any given column {aij }∞ there exists a number Mj such that aij = i=1 
0, for i > Mj . Multiplication of two infinite matrices A and B is then 
defined as 

min(ANi ,BMj ) 

(AB)ij = (A)ik (B)kj 

k=1 
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In order to construct the matrix representations of linear trans­
dforms x and we consider their actions on the standard basis ele­dx 

ment xk . For k ≥ 0, x(xk ) = xk+1 . Similarily for k > 0, d (xk ) = dx 
dkxk−1, k = 0, dx (x

0) = 0. Hence, ⎞⎛ ⎞⎛ 0 0 0 . . . 0 1 0 0 . . . 

x =


⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎠


1 0 0 . . .
⎜⎜⎜⎝


⎟⎟⎟⎠


0 0 2 0 . . .

0 0 0 3 

0 1 0X = A Y = A . . .
=

x 
d 

0 0 1
d

. . . .. . . . . . . . . . .. . . .. . 

By matrix multiplication: ⎞⎛⎞⎛ 
1 0 0 . . . 0 0 0 . . .
⎜⎜⎜⎝


0 2 0

0 0 3


. . .
⎟⎟⎟⎠

Y X =


⎜⎜⎜⎝


⎟⎟⎟⎠


0 1 0 . . . 
XY = 0 0 2 

. . . . . .. . . . . . . . . . . . 

⎞⎛Thus: 

XY − Y X = 
⎜⎜⎜⎝


1 0 0 . . .

0 1 0 . . .

0 0 1 
. . .. . . . . . 

⎟⎟⎟⎠

= I. 

Hence, X and Y as defined above are a solution to XY − Y X = I.



