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18.06 PSET 3 SOLUTIONS 

FEBRUARY 22, 2010 

Problem 1. (§3.2, #18) The plane x − 3y − z = 12 is parallel to the plane x − 3y − z = 0 in Problem 
17. One particular point on this plane is (12, 0, 0). All points on the plane have the form (fill in the first 
components) 

        

x 
y = 0 + y 1 + z 0 . 

z 0 0 1 

Solution. (4 points) The equation x = 12 + 3y + z says it all: 
           

x 12 + 3y + z 12 3 1 
y  =  y  =  0  + y  1  + z  0  . 

z z 0 0 1 

Problem 2. (§3.2, #24) (If possible. . . ) Construct a matrix whose column space contains (1, 1, 0) and 
(0, 1, 1) and whose nullspace contains (1, 0, 1) and (0, 0, 1). 

Solution. (4 points) Not possible : Such a matrix A must be 3 × 3. Since the nullspace is supposed to 

contain two independent vectors, A can have at most 3−2 = 1 pivots. Since the column space is supposed to 
contain two independent vectors, A must have at least 2 pivots. These conditions cannot both be met! � 

A 
Problem 3. (§3.2, #36) How is the nullspace N(C) related to the spaces N(A) and N(B), if C = ? 

B 

Solution. (12 points) N(C) = N(A) ∩ N(B) just the intersection: Indeed, 

Ax 
Cx = 

Bx 

so that Cx = 0 if and only if Ax = 0 and Bx = 0. (...and as a nitpick, it wouldn’t be quite sloppy instead 
write “if and only if Ax = Bx = 0”—those are zero vectors of potentially different length, hardly equal). � 

Problem 4. (§3.2, #37) Kirchoff’s Law says that current in = current out at every node. This network has 
six currents y1, . . . , y6 (the arrows show the positive direction, each yi could be positive or negative). Find 
the four equations Ay = 0 for Kirchoff’s Law at the four nodes. Find three special solutions in the nullspace 
of A. 

Solution. (12 points) The four equations are, in order by node, 

y1 − y3 + y4 = 0 

−y1 + y2 + y5 = 0 

−y2 + y3 + y6 = 0 

−y4 − y5 − y6 = 0 
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or in matrix form Ay = 0 for 
  

1 0 − 1 1 0 0 
−1 1 0 0 1 0  

 A = 
 0 −1 1 0 0 1  

0 0 0 −1 −1 −1 

Adding the last three rows to the first eliminates it, and shows that we have three “pivot variables” 
y1, y2, y4 and three “free variables” y3, y5, y6. 
(y3, y5, y6) = (1, 0, 0), (0, 1, 0), (0, 0, 1): 

  

y1 
y2

 

  

y3
 

  = 
y4

 

  

y5 

y6 

We find the special solutions by back-substitution from 

      

1 1 1 
1  0   1  

      

1  0   0  

  ,   ,   � 
      

 

0 
 

−1 
 

−1 
 

0  1   0  

0 0 1 

Problem 5. (§3.3, #19) Suppose A and B are n by n matrices, and AB = I. Prove from rank(AB) ≤
rank(A) that the rank of A is n. So A is invertible and B must be its two-sided inverse (Section 2.5). 
Therefore BA = I (which is not so obvious!). 

Solution. (4 points) Since A is n by n, rank(A) ≤ n and conversely 

n = rank(In) = rank(AB) ≤ rank(A). 

The rest of the problem statement seems to be “commentary,” and not further things to do. � 

Problem 6. (§3.3, #25) Neat fact Every m by n matrix of rank r reduces to (m by r) times 
(r by n): 

A = (pivot columns of A) (first r rows of R)) = (COL) (ROW) . 

Write the 3 by 4 matrix A in equation (1) at the start of this section as the product of the 3 by 2 matrix 
from the pivot columns and the 2 by 4 matrix from R. 

Solution. (4 points) 
    

1 1 2 4 1 1 [ ] 

1 0 2 3 
A = 1 2 2 5 = 1 2 � 

0 1 0 1 
1 3 2 6 1 3 

Problem 7. (§3.3, #27) Suppose R is m by n of rank r, with pivot columns first: 

I F 
0 0 

(a) What are the shapes of those four blocks? 
(b) Find a right-inverse B with RB = I if r = m. 
(c) Find a left-inverse C with CR = I if r = n. 
(d) What is the reduced row echelon form of RT (with shapes)? 
(e) What is the reduced row echelon form of RT R (with shapes)? 

Prove that RT R has the same nullspace as R. Later we show that AT A always has the same nullspace as A 
(a valuable fact). 

Solution. (12 points) 

(a) 

r × r r × (n − r) 
(m − r) × r (m − r) × (n − r) 
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(b) In this case 

R = 
[ 

I F 
] 

so we can take B = 

[ 

Ir×r 

0(n−r)×r 

] 

(c) In this case 

R = 
[ 

I 0 
] 

so we can take C = 
[ 

Ir×r 0r×(m−r) 

] 

(d) Note that 

Ir×r 0r×(m−r) Ir×r 0r×(m−r)RT = 
F T 0(n−r)×(m−r) 

so that rref(RT ) =
0(n−r)×r 0(n−r)×(m−r) 

(e) Note that 
[ ] [ ] 

RT R = 
Ir×r 

F T 
F 
0 

so that rref (RT R) = 
Ir×r 

0(m−r)×r 

Fr×(n−r) 

0(m−r)×(n−r) 
= R 

Performing row operations doesn’t change the nullspace, so that N(A) = N(rref (A)) for any matrix A. So,

N(A) = N(RT R) by (e). �


Problem 8. (§3.3, #28) Suppose you allow elementary column operations on A as well as elementary row

operations (which get to R). What is the “row-and-column reduced form” for an m by n matrix of rank r?


Solution. (12 points) After getting to R we can use the column operations to get rid of F , and get to 
( ) 

Ir×r 0r×(n−r) 
� 

0(m−r)×r 0(m−r)×(n−r) 

Problem 9. (§3.3, #17 – Optional) 

(a) Suppose column j of B is a combination of previous columns of B. Show that column j of AB is 
the same combination of previous columnd of AB. Then AB cannot have new pivot columns, so 
rank(AB) ≤ rank(B). 

1 1 
(b) Find A1 and A2 so that rank(A1B) = 1 and rank(A2B) = 0 for B = . 

1 1 

Solution. (Optional) 

(a) That column j of B is a combination of previous columns of B means precisely that there exist 
numbers a1, . . . , aj−1 so that each row vector x = (xi) of B satisfies the linear relation 

j−1 

xj = aixi = a1x1 + + aj−1xj−1· · · 
i=1 

The rows of the matrix AB are all linear combinations of the rows of B, and so also satisfy this 
linear relation. So, column j is the same combination of previous columns of AB, as desired. Since a 
column is pivot column precisely when it is not a combination of previous columns, this shows that 
AB cannot have previous columns and the rank inequality. 

(b) Take A1 = I2 and A2 = 02 (or for a less trivial example A2 =
1 −1

). � 
1 −1 

Problem 10. (§3.4, #13) Explain why these are all false: 

(a) The complete solution is any linear combination of xp and xn. 
(b) A system Ax = b has at most one particular solution. 
(c) The solution xp with all free variables zero is the shortest solution (minimum length ‖x‖). Find a 2 

by 2 counterexample. 
(d) If A is invertible there is no solution xn in the nullspace. 
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Solution. (4 points) 

(a) The coefficient of xp must be one. 
(b) If xn N(A) is in the nullspace of A and xp is one particular solution, then xp + xn is also a ∈

particular solution. 
(c) Lots of counterexamples are possible. Let’s talk about the 2 by 2 case geometrically: If A is a 2 by 2 

matrix of rank 1, then the solutions to Ax = b form a line parallel to the line that is the nullspace. 
We’re asking that this line’s closest point to the origin be somewhere not along an axis. The line 
x + y = 1 gives such an example. 

Explicitly, let 

A =
1 1 

b = 
1 

and xp = 
[ 

1 1 
] 

1 1 1 2 2 

Then, ‖xp‖ = 1/
√

2 < 1 while the particular solutions having some coordinate equal to zero are (1, 0) 
and (0, 1) and they both have ‖ · ‖ = 1. 

(d) There’s always xn = 0. � 

Problem 11. (§3.4, #25) Write down all known relations between r and m and n if Ax = b has 

(a) no solution for some b 
(b) infinitely many solutions for every b 
(c) exactly one solution for some b, no solution for other b 
(d) exactly one solution for every b. 

Solution. (4 points) 

(a) The system has less than full row rank: r < m. 
(b) The system has full row rank, and less than full column rank: m = r < n. 
(c) The system has full column rank, and less than full row rank: n = r < m. 
(d) The system has full row and column rank (i.e., is invertible): n = r = m. � 

Problem 12. (§3.4, #28) Apply Gauss-Jordan elimination to Ux = 0 and Ux = c. Reach Rx = 0 and 
Rx = d: 

[ ] 1 2 3 0 [ ] 1 2 3 5 
U 0 = and U c = . 

0 0 4 0 0 0 4 8


Solve Rx = 0 to find xn (its free variable is x2 = 1). Solve Rx = d to find xp (its free variable is x2 = 0).


Solution. (4 points) Let me just say to whoever’s reading: The problem statement is confusing as written!! 
In any case, I think the desired response is: 

1 2 0 0 1 2 0 −1 
and 

0 0 1 0 0 0 1 2 

so that 
1 2 0 −1 

R = and d = 
0 0 1 2 

and 
    

−2 −1 
xn =  1  and xp =  0  . � 

0 2 

Problem 13. (§3.4, #35) Suppose K is the 9 by 9 second difference matrix (2’s on the diagonal, -1’s on the 
diagonal above and also below). Solve the equation Kx = b = (10, . . . , 10). If you graph x1, . . . , x9 above 
the points 1, . . . , 9 on the x axis, I think the nine points fall on a parabola. 

Solution. (12 points) Here’s some MATLAB code that should do this: 
4 



� 

K = 2*eye(9) + diag(-1*ones(1,8),1) + diag(-1*ones(1,8),-1);

b = 10*ones(9,1);

x = K \ b


It gives back that 
    

x1 45 
x2

  80  

    

x3
 105  

    

x4
 120  

    

x5
 = 125  

    

x6
 120  

    

x7
 105  

    

x8  80  

x9 45 

And for fun, the graph is indeed parabola-like: 
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Problem 14. (§3.4, #36) Suppose Ax = b and Cx = b have the same (complete) solutions for every b. Is 
it true that A = C? 

Solution. (12 points) Yes . In order to check that A = C as matrices, it’s enough to check that Ay = Cy 
for all vectors y of the correct size (or just for the standard basis vectors, since multiplication by them “picks 
out the columns”). So let y be any vector of the correct size, and set b = Ay. Then y is certainly a solution 
to Ax = b, and so by our hypothesis must also be a solution to Cx = b; in other words, Cy = b = Ay. � 
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