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1 Learning Goals 

1. Know the definition of a continuous random variable. 

2. Know the definition of the probability density function (pdf) and cumulative distribution 
function (cdf). 

3. Be able to explain why we use probability density for continuous random variables. 

2 Introduction 

We now turn to continuous random variables. All random variables assign a number to 
each outcome in a sample space. Whereas discrete random variables take on a discrete set 
of possible values, continuous random variables have a continuous set of values. 

Computationally, to go from discrete to continuous we simply replace sums by integrals. It 
will help you to keep in mind that (informally) an integral is just a continuous sum. 

Example 1. Since time is continuous, the amount of time Jon is early (or late) for class is 
a continuous random variable. Let’s go over this example in some detail. 

Suppose you measure how early Jon arrives to class each day (in units of minutes). We’ll 
assume there are random fluctuations in the exact time he shows up. This is an experiment 
with sample space the real numbers, since in principle Jon could arrive 3.43 minutes early, or 
2.7 minutes late (corresponding to the outcome -2.7), or at any other time. So the random 
variable which gives the outcome itself has a continuous range of possible values. 

Rather than continually refer to ‘the random variable’, in the example about we might 
write: Let T = “time in minutes that Jon is early for class on any given day.” 

3 Calculus Warmup 

While we will assume you can compute the most familiar forms of derivatives and integrals 
by hand, we do not expect you to be calculus whizzes. For tricky expressions, we’ll let the 
computer do most of the calculating. Conceptually, you should be comfortable with two 
views of a definite integral. 

 b 

1. f(x) dx = area under the curve y = f(x). 
a 

 b 

2. f(x) dx = ‘sum of  f(x) dx’. 
a 
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The connection between the two is: 
n 

area ≈ sum of rectangle areas = f(x1)Δx + f(x2)Δx + . . .  + f(xn)Δx = f(xi)Δx. 
1 

As the width Δx of the intervals gets smaller the approximation becomes better. 

y 
y 

a b 

y = f(x) 

x 
x x0 x1 x2 xn 

Δx 
· · ·  

a b 

y = f (x) 

Area = f(xi)Δx 

Area is approximately the sum of rectangles 

Note: In calculus you learned to compute integrals by finding antiderivatives. This is 
important for calculations, but don’t confuse this method for the reason we use integrals. 
Our interest in integrals comes primarily from its interpretation as a ‘sum’ and to a lesser 
extent its interpretation as area. 

Continuous Random Variables and Probability Density Func­
tions 

A continuous random variable takes a range of values, which may be finite or infinite in 
extent. Here are a few examples of ranges: [0, 1], [0, ∞), (−∞, ∞), [a, b]. 

Definition: A random variable X is continuous if there is a function f(x) such that for 
any c ≤ d we have 

d 

P (c ≤ X ≤ d) =  f(x) dx. (1) 
c 

The function f(x) is called the probability density function (pdf). 

The pdf always satisfies the following properties: 
1. f(x) ≥ 0 (f is nonnegative). 

∞ 

2. f(x) dx = 1  (  ⇔ P (−∞ < X <  ∞) = 1). 
−∞ 

The pdf f(x) of a continuous random variable is the analogue of the pmf p(x) of a discrete 
random variables. Here are two important differences: 
1. Unlike p(x), the pdf f(x) is  not a probability. You have to integrate it to get probability.
 

2. Since f(x) is not a probability, there is no restriction that f(x) be less than or equal  to 
  
1.
 

Note:
 
In Property 2, we integrated over (−∞, ∞) since we did not know the range of values taken
 
by X. Formally, this makes sense because we define f(x) to be 0 outside of the range of X.
 
In practice, we would integrate between bounds given by the range of X.
 

∫

∫
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4.1 Graphical View of Probability 

If you graph the probability density function of a continuous random variable X then 
P (c ≤ X ≤ d) = area under the graph between c and d.
 

x 

f(x) 

P (c ≤ X ≤ d) 

c d 

Think: What is the total area under the pdf f(x)? 

4.2 The terms ‘probability mass’ and ‘probability density’ 

Why do we use the terms mass and density to describe the pmf and pdf? What is the 
difference between the two? The simple answer is that these terms are completely analogous 
to the mass and density you saw in physics and calculus. We’ll review this first for the pmf 
and then discuss the pdf. 

Mass as a sum: 

If masses m1, m2, m3, and  m4 are set in a row at positions x1, x2, x3, and  x4, then the 
total mass is m1 + m2 + m3 + m4. 

m1 m2 m3 m4 
x 

x1 x2 x3 x4 

We can define a ‘mass function’ p(x) with  p(xj ) =  mj for j = 1, 2, 3, 4, and p(x) = 0  
otherwise. In this notation the total mass is p(x1) +  p(x2) +  p(x3) +  p(x4). 

The probability mass function behaves in exactly the same way, except it has the dimension 
of probability instead of mass. 

Mass as an integral of density: 

Suppose you have a rod of length L meters with varying density f(x) kg/m. (Note the units 
are mass/length.) 

x 
0 x1 x2 x3 xi 

Δx 
xn = L 

mass of ith piece ≈ f(xi)Δx 

If the density varies continuously, we must find the total mass of the rod by integration: 

L 

total mass = f(x) dx. 
0 

This formula comes from dividing the rod into small pieces and ’summing’ up the mass of
 

∫
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each piece. That is: 
 

total mass ≈ f(xi)Δx 
i=1 

In the limit as Δx goes to zero the sum becomes the integral. 

The probability density function behaves exactly the same way, except it has units of prob­
ability/(unit x) instead of kg/m. Indeed, equation (1) is exactly analogous to the above 
integral for total mass. 

While we’re on a physics kick, note that for both discrete and continuous random variables, 
the expected value is simply the center of mass or balance point. 

Example 2. Suppose X has pdf f(x) = 3  on  [0, 1/3] (this means f(x) = 0 outside of 
[0, 1/3]). Graph the pdf and compute P (.1 ≤ X ≤ .2) and P (.1 ≤ X ≤ 1). 

answer: P (.1 ≤ X ≤ .2) is shown below at left. We can compute the integral: 

.2 .2 

P (.1 ≤ X ≤ .2) = f(x) dx = 3 dx = .3. 
.1 .1 

Or we can find the area geometrically: 

area of rectangle = 3 · .1 =  .3. 

P (.1 ≤ X ≤ 1) is shown below at right. Since there is only area under f(x) up to 1/3, we 
have P (.1 ≤ X ≤ 1) = 3 · (1/3 − .1) = .7. 

f(x) 3 f(x)3 

x x 
.1 .2 1/3 .1 1/3 1 

P (.1 ≤ X ≤ .2) P (.1 ≤ X ≤ 1) 

Think: In the previous example f(x) takes values greater than 1. Why does this not 
violate the rule that probabilities are always between 0 and 1? 

Note on notation. We can define a random variable by giving its range and probability 
density function. For example we might say, let X be a random variable with range [0,1] 
and pdf f(x) =  x/2. Implicitly, this means that X has no probability density outside of the 
given range. If we wanted to be absolutely rigorous, we could explicitly say that f(x) = 0  
outside of [0,1], but in practice this won’t be necessary. 

Example 3. Let X be a random variable with range [0,1] and pdf f(x) =  Cx2. What  is  
the value of C? 

n∑

∫ ∫
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answer: Since the total probability must be 1, we have
 

1 1 

f(x) dx = 1  ⇔ Cx2 dx = 1. 
0 0 

By evaluating the integral, the equation at right becomes 

C/3 = 1  ⇒ C = 3  . 

Note: We say the constant C above is needed to normalize the density to have total 
probability 1. 

Example 4. Let X be the random variable in the Example 3. Find P (X ≤ 1/2). 
1/2  1/23 answer: P (X ≤ 1/2) = 3x 2 dx = x = 

0 
0 

1 
. 

8 

For this X (or any continuous random variable):
 

Think: What is P (a ≤ X ≤ a)?
 

Think: What is P (X = 0)? 
  

Think: Does P (X = a) = 0  mean  that  X can never equal a?
 

In words the above questions get at the fact that the probability that a random person’s
 
height is exactly 5’9” (to infinite precision, i.e. no rounding!) is 0. Yet it is still possible 
that someone’s height is exactly 5’9”. So the answers to the thinking questions are 0, 0, 
and No. 

4.3 Cumulative Distribution Function 

The cumulative distribution function (cdf) of a continuous random variable X is defined in 
exactly the same way as the cdf of a discrete random variable. 

b 

F (b) =  P (X ≤ b) =  f(x) dx, where f(x) is the  pdf of  X. 
−∞ 

Notes: 
1. For discrete random variables, we defined the cdf but didn’t have much occasion to use 
it. The cdf plays a far more prominent role for continuous random variables. 

2. As before, we started the integral at −∞ because we did not know the precise range of 
X. Formally, this still makes sense since f(x) = 0 outside the range of X. In practice, we’ll 
know the range and start the integral at the start of the range. 

3. In practice we often say ‘X has distribution F (x)’ rather than ‘X has cumulative distri­
bution function F (x).’ 

Example 5. Find the cumulative distribution function for the density in Example 2. 
a a 

answer: For a in [0,1/3] we have F (a) =  f(x) dx = 3 dx = 3a. 
0 0 

∫ ∫

∫

∫

∫ ∫
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Since f(x) is 0 outside of [0,1/3] we know F (a) =  P (X ≤ a) = 0  for  a < 0 and  F (a) = 1  
for a > 1/3. Putting this all together we have 

⎧ ⎪0  if  a < 0 ⎨ 
F (a) =  3a if 0 ≤ a ≤ 1/3 ⎪ ⎩ 

1  if 1/3 < a.  

Here are the graphs of f(x) and  F (x). 

F (x) 
1 

1/3
 

f(x)3 

x x 

Note the different scales on the vertical axes. Remember that the vertical axis for the pdf 
represents probability density and that of the cdf represents probability. 

Example 6. Find the cdf for the pdf in Example 3, f(x) = 3x2 on [0, 1]. Suppose X is a 
random variable with this distribution. Find P (X < 1/2). 

a 

answer: f(x) = 3x2 on [0,1] ⇒ F (a) =  3x 2 dx = a 3 on [0,1]. Therefore, 
0 ⎧ ⎪0  if  a < 0 ⎨ 

F (a) =  a3 if 0 ≤ a ≤ 1 ⎪ ⎩ 
1  if 1  < a  

Thus, P (X < 1/2) = F (1/2) = 1/8. Graphs of f(x) and  F (x) are  shown.  

1/3
 

3 f(x) 

x x 
1 

4.4 Properties of cumulative distribution functions 

Here are the most important properties of cdf’s. 

0. (Definition) F (x) =  P (X ≤ x) 

1. 0 ≤ F (x) ≤ 1 

2. F (x) is non-decreasing, i.e. if a ≤ b then F (a) ≤ F (b). 

3. lim F (x) = 1 and lim F (x) = 0  
x→∞ x→−∞ 

4. P (a ≤ X ≤ b) =  F (b) − F (a) 

F (x) 

1 

1
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5. F '(x) =  f(x). 

Properties 1, 2, 3 are identical to those for discrete distributions. The graphs in the previous
 
examples illustrate them.
 

Property 4 can be seen algebraically:
 

b a b 

f(x) dx = f(x) dx + f(x) dx 
−∞ −∞ a 
b b a 

⇔ f(x) dx = f(x) dx − f(x) dx 
a −∞ −∞ 

⇔ P (a ≤ X ≤ b) =  F (b) − F (a). 

Property 4 can also be seen geometrically. The orange region below represents F (b) and  
the striped region represents F (a). Their difference is P (a ≤ X ≤ b). 

x 

P (a ≤ X ≤ b) 

a b 

Property 5 is the fundamental theorem of calculus. 

4.5 Probability density as a dartboard 

We find it helpful to think of sampling values from a continuous random variable as throw­
ing darts at a funny dartboard. Consider the region underneath the graph of a pdf as a 
dartboard. Divide the board into small equal size squares and suppose that when you throw 
a dart you are equally likely to land in any of the squares. The probability the dart lands 
in a given region is the fraction of the total area under the curve taken up by the region. 
Since the total area equals 1, this fraction is just the area of the region. If X represents 
the x-coordinate of the dart, then the probability that the dart lands with x-coordinate 
between a and b is just 

b 

P (a ≤ X ≤ b) = area under f(x) between a and b = f(x) dx. 
a 

∫ ∫ ∫
∫ ∫ ∫

∫
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