
Conditional Probability, Independence and Bayes’ Theorem
 
Class 3, 18.05, Spring 2014
 

Jeremy Orloff and Jonathan Bloom
 

1 Learning Goals 

1. Know the definitions of conditional probability and independence of events. 

2. Be able to compute conditional probability directly from the definition. 

3. Be able to use the multiplication rule to compute the total probability of an event. 

4. Be able to check if two events are independent. 

5. Be able to use Bayes formula to ‘invert’ conditional probabilities. 

6. Be able to organize the computation of conditional probabilities using trees and tables. 

7. Understand the base rate fallacy thoroughly. 

2 Conditional Probability 

Conditional probability answers the question ‘how does the probability of an event change
 
if we have extra information’. We’ll illustrate with an example.
 

Example 1. Toss a fair coin 3 times.
 
a) What is the probability of 3 heads?
 
answer: Sample space Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.
 
All outcomes are equally likely, so P (3 heads) = 1/8.
 

b) Suppose we are told that the first toss was heads. Given this information how should we
 
compute the probability of 3 heads?
 
answer: We have a new (reduced) sample space: Ω' = {HHH, HHT, HTH, HTT}.
 
All outcomes are equally likely, so
 

P (3 heads given that the first toss is heads) = 1/4. 

This is called conditional probability, since it takes into account additional conditions. To
 
develop the notation, we rephrase (b) in terms of events.
 

b) Let A be the event ‘all three tosses are heads’ = {HHH}.
 
Let B be the event ‘the first toss is heads’ = {HHH, HHT, HTH, HTT}.
 
The conditional probability of A knowing that B occurred is written
 

P (A|B) 

This is read as ‘the conditional probability of A given B’ or ‘the probability of A condi­
tioned on B’ or simply ‘the probability of A given B’. 

We can visualize conditional probability as follows. Think of P (A) as the proportion of the 
area of the whole sample space taken up by A. For  P (A|B) we restrict our attention to B. 
That is, P (A|B) is the proportion of area of B taken up by A, i.e. P (A ∩ B)/P (B). 
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B 

A 
A ∩ B 

Conditional probability: Abstract visualization and coin example 

Note, A ⊂ B in the right-hand figure, so there are only two colors shown. 

The formal definition of conditional probability catches the gist of the above example and 
visualization. 

Formal definition of conditional probability 
Let A and B be events. We define the conditional probability of A given B as 

P (A ∩ B)
P (A|B) =  , provided P (B)  (1)= 0. 

P (B) 

Let’s redo the coin tossing example using this definition (1). Recall A = ‘3 heads’ and  B 
= ‘first toss is heads’. We have P (A) = 1/8 and  P (B) = 1/2. Since A ∩ B = A, we  also  

1/8have P (A ∩ B) = 1/8. Now according to (1), P (A|B) =  = 1/4, which agrees with our 1/2 

answer in example (1b). 

Multiplication Rule 

The following formula is called the multiplication rule. 

P (A ∩ B) =  P (A|B) · P (B). (2) 

This is simply a rewriting of the definition (1) of conditional probability. We will see that
 
our use of the multiplication rule is very similar to our use of the rule of product. In fact,
 
the multiplication rule is just a souped up version of the rule of product.
 

We start with a simple example where we can check all the probabilities directly by counting.
 

Example 2. Draw two cards from a deck.
 
Let S1 = ‘first card is a spade’.
 
Let S2 = ‘second card is a spade’.
 
What is the P (S2|S1)?
 

answer: We can do this directly by counting: if the first card is a spade then of the 51 
cards remaining, 12 are spades. 

P (S2|S1) = 12/51. 

Now, let’s recompute this using formula (1). We have to compute P (S1), P (S2) and 
  
P (S1 ∩ S2):
 
P (S1) = 1/4 because there are 52 equally likely ways to draw the first card and 13 of them
 
are spades.
 

B

A
A ∩ B
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P (S2) = 1/4: this follows by exactly the same logic as for P (S1). This may seem surprising 
since we know that the value of first card affects the probabilities for the second card. 
However, if we look at all possible two card sequences we will see that every card in the 
deck has equal probability of being the second card. Since 13 of the 52 cards are spades we 
get P (S2) = 13/52 = 1/4. 

P (S1 ∩ S2) =  13·12 = 3/51: This is found by counting the number of ways to draw a spade 52·51 
followed by a second spade and dividing by the number of ways to draw any card followed 
by any other card). 
Now, using (1) we get 

P (S2 ∩ S1) 3/51 
P (S2|S1) =  = = 12/51. 

P (S1) 1/4 

Finally, we verify the multiplication rule by computing both sides of (2). 

13 · 12 3 12 1 3 
P (S1 ∩ S2) =  = and P (S2|S1) · P (S1) =  · = . QED

52 · 51 51 51 4 51 

Think: What is P (S2|S1
c)? 

Law of Total Probability 

The law of total probability will allow us to use the multiplication rule to find probabilities 
in more interesting examples. It involves a lot of notation, but the idea is fairly simple. We 
show the law when the sample space is divided into 3 pieces. It is a simple matter to extend 
the rule when there are more than 3 pieces. 

Law of Total Probability 

Suppose the sample space Ω is divided into 3 disjoint events B1, B2, B3 (see the figure 
below). Then for any event A: 

P (A) =  P (A ∩ B1) +  P (A ∩ B2) +  P (A ∩ B3)
 

P (A) =  P (A|B1) P (B1) +  P (A|B2) P (B2) +  P (A|B3) P (B3)  (3) 
  

The top equation says ‘if A is divided into 3 pieces then P (A) is the sum of the probabilities 
of the pieces’. The bottom equation (3) is called the law of total probability. It  is  just  a  
rewriting of the top using the multiplication rule. 

Ω 

http:probability.It
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The sample space Ω and the event A are each divided into 3 disjoint pieces. 

The law holds if we divide Ω into any number of events, so long as they are disjoint and 
cover all of Ω. Such a division is often called a partition of Ω. 

Our first example will be one where we already know the answer and can verify the law. 

Example 3. An urn contains 5 red balls and 2 green balls. Two balls are drawn one after 
the other. What is the probability that the second ball is red? 

answer: The sample space is Ω = {rr, rg, gr, gg}.
 
Let R1 be the event ‘the first ball is red’, G1 = ‘first ball is green’, R2 = ‘second ball is
 
red’, G2 = ‘second ball is green’. We are asked to find P (R2).
 

The fast way to compute this is just like P (S2) in the card example above. Every ball is 
equally likely to be the second ball. Since 5 out of 7 balls are red, P (R2) = 5/7. 

Let’s compute this same value using the law of total probability (3). First, we’ll find the 
conditional probabilities. This is a simple counting exercise. 

P (R2|R1) = 4/6, P (R2|G1) = 5/6. 

Since R1 and G1 partition Ω the law of total probability says 

P (R2) =  P (R2|R1)P (R1) +  P (R2|G1)P (G1)  (4)  

4 5 5 2 
= · + · 

6 7 6 7 

30 5 
= = . 

42 7 

Probability urns 

The example above used probability urns. Their use goes back to the beginning of the 
subject and we would be remiss not to introduce them. This toy model is very useful. We 
quote from Wikipedia: http://en.wikipedia.org/wiki/Urn_problem 

In probability and statistics, an urn problem is an idealized mental exercise 
in which some objects of real interest (such as atoms, people, cars, etc.) are 
represented as colored balls in an urn or other container. One pretends to draw 
(remove) one or more balls from the urn; the goal is to determine the probability 
of drawing one color or another, or some other properties. A key parameter is 
whether each ball is returned to the urn after each draw. 

It  doesn’t take much to make an example  where (3)  is  really  the best  way to compute the  
probability. 

Example 4. An urn contains 5 red balls and 2 green balls. A ball is drawn. If it’s green 
a red ball is added to the urn and if it’s red a green ball is added to the urn. (The original 
ball is not returned to the urn.) Then a second ball is drawn. What is the probability the 
second ball is red? 

answer: The law of total probability says that P (R2) can be computed using the expression 
in Equation (4). Only the values for the probabilities will change. We have 

P (R2|R1) = 4/7, P (R2|G1) = 6/7. 

http://en.wikipedia.org/wiki/Urn_problem
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Therefore, 

4 5 6 2 32 
P (R2) =  P (R2|R1)P (R1) +  P (R2|G1)P (G1) =  · + · = . 

7 7 7 7 49 

Using Trees to Organize the Computation 

Trees are a great way to organize computations with conditional probability and the law of 
total probability. The figures and examples will make clear what we mean by a tree. As 
with the rule of product, the key is to organize the underlying process into a sequence of 
actions. 

We start by redoing Example 4. The sequence of actions are: first draw ball 1 (and add the 
appropriate ball to the urn) and then draw ball 2. 

G1R1 

R2 G2 R2 G2 

5/7 2/7 

4/7 3/7 6/7 1/7 

You interpret this tree as follows. Each dot is called a node. The tree is organized by levels. 
The top node (root node) is at level 0. The next layer down is level 1 and so on. Each level 
shows the outcomes at one stage of the game. Level 1 shows the possible outcomes of the 
first draw. Level 2 shows the possible outcomes of the second draw starting from each node 
in level 1. 

Probabilities are written along the branches. The probability of R1 (red on the first draw) 
is 5/7. It is written along the branch from the root node to the one labeled R1. At  the  
next level we put in conditional probabilities. The probability along the branch from R1 to 
R2 is P (R2|R1) = 4/7. It represents the probability of going to node R2 given that you are 
already at R1. 

The muliplication rule says that the probability of getting to any node is just the product 
of the probabilities along the path to get there. For example, the R2 node at the far left 

4represents the event R1 ∩ R2 and P (R1 ∩ R2) =  P (R1) · P (R2|R1) =  5 · 7 .7 

The law of total probability is just the statement that P (R2) is the sum of the probabilities 
of all paths leading to R2 (the two circled nodes in the figure). In this case, 

5 4 2 6 32 
P (R2) =  · + · = ,

7 7 7 7 49

exactly as in the previous example. 

5.1 Shorthand vs. precise trees 

The tree given above involves some shorthand. For example, the node marked R2 at the 
far left really represents the event R1 ∩ R2, since it ends the path from the root through 
R1 to R2. Here is the same tree with everything labeled precisely. As you can see this tree 
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is more cumbersome to make and use. We usually use the shorthand version of trees. You 
should make sure you know how to interpret them precisely. 

G1R1 

R1 ∩ R2 R1 ∩ G2 G1 ∩ R2 G1 ∩ G2 

P (R1) = 5/7 P (G1) = 2/7 

P (R2|R1) = 4/7 P (G2|R1) = 3/7 P (R2|G1) = 6/7 P (G2|G1) = 1/7 

Independence 

Two events are independent if knowledge that one occurred does not change the probability 
that the other occurred. Informally, events are independent if they do not influence one 
another. 

Example 5. Toss a coin twice. We expect the outcomes of the two tosses to be independent 
of one another. In real experiments this always has to be checked. If my coin lands in honey 
and I don’t bother to clean it, then the second toss might be affected by the outcome of the 
first toss. 

More seriously, the independence of experiments can by undermined by the failure to clean or 
recalibrate equipment between experiments or to isolate supposedly independent observers 
from each other or a common influence. We’ve all experienced hearing the same ‘fact’ from 
different people. Hearing it from different sources tends to lend it credence until we learn 
that they all heard it from a common source. That is, our sources were not independent. 

Translating the verbal description of independence into symbols gives 

A is independent of B if P (A|B) =  P (A). 

That is, knowing that B occurred does not change the probability that A occurred. In 
terms of events as subsets, knowing that the realized outcome is in B does not change the 
probability that it is in A. 

If A and B are independent in the above sense, then the multiplication rule gives P (A ∩ 
B) =  P (A|B) · P (B) =  P (A) · P (B). This justifies the following technical definition of 
independence. 

Formal definition of independence: Two events A and B are independent if 

P (A ∩ B) =  P (A) · P (B)  (5)  

This is a nice symmetric definition which makes clear that A is independent of B if and only 
if B is independent of A. Unlike the equation with conditional probabilities, this definition 
makes sense even when P (B) = 0. In terms of conditional probabilities, we have: 
1. If P (B) = 0  then  A and B are independent if and only if P (A|B) =  P (A). 
2. If P (A) = 0  then  A and B are independent if and only if P (B|A) =  P (B). 

Independent events commonly arise as different trials in an experiment, as in the following 
example. 
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Example 6. Toss a fair coin twice. 
1. Let H1 = ‘heads on first toss’ and let H2 = ‘heads on second toss’. Since P (H1 ∩ H2) =  
1 1 1· = , the events are independent. 2 2 4 

However we can ask about the independence of any two events, as in the following two
 
examples.
 

Example 7. Toss a fair coin 3 times.
 
Let H1 = ‘heads on first toss’, A = ‘two heads total’.
 
We know P (A) = 3/8. We have H1 = {HHH, HHT, HTH, HTT}, so  P (A|H1) = 2/4.
 
Since P (A|H1) = P (A) the events are not independent.
 

Example 8. Draw a card from a deck.
 
Let’s examine the independence of 3 events ‘the card is an ace’, ‘the card is a heart’ and
 
‘the card is red’.
 

a) Because each ace is equally likely and each suit is equally likely it makes intuitive sense
 
that whether the card is a heart is independent of whether it’s an ace. Let’s show this
 
formally.
 
Define the events A = ‘ace’, H = ‘hearts’. 
  
We know P (A) = 4/52 = 1/13, P (A|H) = 1/13. Since P (A) =  P (A|H) we have that  A
 
is independent of H.
 

b) Now define the event R = ‘red’. 
  
P (A|R) = 2/26 = 1/13. So A is independent of R. That is, whether the card is an ace is
 
independent of whether it’s red.
 

c) What about H and R?
 
Since P (H) = 1/4 and  P (H|R) = 1/2, H and R are not independent.
 
We can also see this the other way around: P (R) = 1/2 and  P (R|H) = 1,  so  H and R are
 
not independent.
 

6.1 Paradoxes of Independence 

An event A with probability 0 is independent of itself, since in this case both sides of 
equation (5) are 0. This appears paradoxical because knowledge that A occurred certainly 
gives information about whether A occurred. We resolve the paradox by noting that since 
P (A) = 0 the statement ‘A occurred’ is vacuous. 

Think: For what other value(s) of P (A) is  A independent of itself? 

7 Bayes Theorem 

Bayes theorem is a pillar of both probability and statistics and central to the rest of this 
course. 

For two events A and B Bayes theorem (also called Bayes rule and Bayes formula) says  

P (A|B) · P (B)
P (B|A) =  . (6)

P (A) 

Comments: 1. Bayes rule tells us how to ‘invert’ conditional probabilities, i.e. to find 
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P (B|A) from  P (A|B). 
2. In practice, P (A) is often computed using the law of total probability. 

Proof of Bayes rule 
The key  point is that  A ∩ B is symmetric in A and B. So the multiplication rule says 
P (B|A) · P (A) =  P (A ∩ B) =  P (A|B) · P (B). Now divide through by P (A) to get  Bayes  
rule. 

A common mistake is to confuse P (A|B) and  P (B|A). They can be very different. This is 
illustrated in the next example. 

Example 9. Toss a coin 5 times. Let H1 = ‘first toss is heads’ and let HA = ‘all 5 tosses 
are heads’. Then P (H1|HA) = 1 but P (HA|H1) = 1/16. 

For practice, let’s check this with Bayes theorem. The terms are P (HA|H1) = 1/16, 
P (H1) = 1/2, P (HA) = 1/32. So, 

P (HA|H1)P (H1) (1/16) · (1/2)
P (H1|HA) =  = = 1. 

P (HA) 1/32 

7.1  The Base Rate Fallacy  

The base rate fallacy is one of many examples showing that it’s easy to confuse the meaning 
of P (B|A) and  P (A|B) when a situation is described in words. This is one of the key 
examples from probability and it will inform much of our practice and interpretation of 
statistics. You should strive to understand it thoroughly. 

Example 10. The Base Rate Fallacy 
Consider a routine screening test for a disease. Suppose the frequency of the disease in the
 
population (base rate) is 0.5%. The test is highly accurate with a 5% false positive rate and
 
a 10% false negative rate.
 

You take the test and it comes back positive. What is the probability that you have the
 
disease?
 

answer: We will do the computation three times: using trees, tables and symbols. We’ll
 
use the following notation for the relevant events:
 
D+ = ‘you have the disease’
 
D− = ‘you do not have the disease
 
T + = ‘you tested positive’
 
T − = ‘you tested negative’.
 

We are given P (D+) = .005 and therefore P (D−) =  .995. The false positive and false
 
negative rates are (by definition) conditional probabilities.
 

P (false positive) = P (T + |D−) =  .05 and P (false negative) = P (T − |D+) = .1. 

The complementary probabilities are known as the true negative and true positive rates: 

P (T − |D−) = 1  − P (T + |D−) =  .95 and P (T + |D+) = 1 − P (T − |D+) = .9. 

Trees: All of these probabilities can be displayed quite nicely in a tree. 
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D+D− 

.005.995 

.9 .1.05 .95 

T + T − T + T − 

The question asks for the probability that you have the disease given that you tested positive, 
i.e. what is the value of P (D+|T +). We aren’t given this value, but we do know P (T +|D+), 
so we can use Bayes theorem. 

P (T + |D+) · P (D+)
P (D + |T +) = . 

P (T +) 

The two probabilities in the numerator are given. We compute the denominator P (T +) 
using the law of total probability. Using the tree we just have to sum the probabilities for 
each of the nodes marked T + 

P (T +) = .995 × .05 + .005 × .9 =  .05425 

Thus, 
.9 × .005 

P (D + |T +) = = 0.082949 ≈ 8.3%. 
.05425 

Remarks: This is called the base rate fallacy because the base rate of the disease in the 
population is so low that the vast majority of the people taking the test are healthy, and 
even with an accurate test most of the positives will be healthy people. Ask your doctor 
for his/her guess at the odds. 

To summarize the base rate fallacy with specific numbers 

95% of all tests are accurate does not imply 95% of positive tests are accurate 

We will refer back to this example frequently. It and similar examples are at the heart of 
many statistical misunderstandings. 

Other ways to work Example 10 

Tables: Another trick that is useful for computing probabilities is to make a table. Let’s 
redo the previous example using such a table. 

D+ D− total 
T + 45 498 543 
T − 5 9452 9457 
total 50 9950 10000 

From the table, we see there are 45 sick people who tested positive, and 543 people in total 
who tested positive. 

We construct the table as follows. Pick a number, say 10000 people, and place it as the 
grand total in the lower right. Using P (D+) = .005 we can fill in the number out of the 
10000 who are sick (D+), likewise healthy (D−). 

D+ D− total 
T + 
T − 
total 50 9950 10000 
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Using P (T + |D+) = .9 we can compute the number of sick people who tested positive as 
.9 · 50 = 45. Likewise for the other entries. 

D+ D− total 
T + 45 498 
T − 5 9452 
total 50 9950 10000 

Now we can add up the first (resp., second) row to get the total number people who tested 
positive (resp.,negative). This gives the full table at the top of the page. 

Using the complete table we can compute 

|D + ∩ T + | 45 
P (D + |T +) = = = 8.3%. |T + | 543 

Symbols: For completeness, we show how the solution looks when written out directly in 
symbols. 

P (T + |D+) · P (D+)
P (D + |T +) = 

P (T +) 
P (T + |D+) · P (D+) 

= 
P (T + |D+) · P (D+) + P (T + |D−) · P (D−) 

.9 × .005 
= 

.9 × .005 + .05 × .995 
= 8.3% 

Visualization: The figure below illustrates the base rate fallacy. The large blue area 
represents all the healthy people. The much smaller red area represents the sick people. 
The shaded rectangle represents the the people who test positive. The shaded area covers 
most of the red area and only a small part of the blue area. Even so, the most of the shaded 
area is over the blue. That is, most of the positive tests are of healthy people. 

D− D+ 

7.2 Bayes rule in 18.05 

As we said at the start of this section, Bayes rule is a pillar of probability and statistics. 
We have seen that Bayes rule allows us to ‘invert’ conditional probabilities. When we learn 
statistics we will see that the art of statistical inference involves deciding how to proceed 
when one (or more) of the terms on the right side of Bayes rule is unknown. 

D+ D− total

T+ 45 498

T− 5 9452

total 50 9950 10000

P (D + |T+) =
|D + ∩T + |
|T + | =

45

543
= 8.3%.

P (D + |T+) =
P (T + |D+) · P (D+)

P (T+)

=
P (T + |D+) · P (D+)

P (T + |D+) · P (D+) + P (T + |D−) · P (D−)

=
.9× .005

.9× .005 + .05× .995

= 8.3%
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