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Null Hypothesis Significance Testing III
 
Class 19, 18.05, Spring 2014
 

Jeremy Orloff and Jonathan Bloom
 

Learning Goals 

1. Given hypotheses and data, be able to identify to identify an appropriate significance 
test from a list of common ones. 

2. Given hypotheses, data, and a suggested significance test, know how to look up details 
and apply the significance test. 

Introduction 

In these notes we will collect together some of the most common significance tests, though 
by necessity we will leave out many other useful ones. Still, all significance tests follow the 
same basic pattern in their design and implementation, so by learning the ones we include 
you should be able to easily apply other ones as needed. 

Designing a null hypothesis significance test (NHST): 

•	 Specify null and alternative hypotheses. 

•	 Choose a test statistic whose null distribution and alternative distribution(s) are 
known. 

•	 Specify a rejection region. Most often this is done implicitly by specifying a signif­
icance level α and a method for computing p-values based on the tails of the null 
distribution. 

•	 Compute power using the alternative distribution(s). 

Running a NHST: 

•	 Collect data and compute the test statistic. 

•	 Check if the test statistic is in the rejection region. Most often this is done implicitly 
by checking if p < α. If so, we ‘reject the null hypothesis in favor of the alternative 
hypothesis’. Otherwise we conclude ‘the data does not support rejecting the null 
hypothesis’. 

Note the careful phrasing: when we fail to reject H0, we do not conclude that H0 is true. 
The failure to reject may have other causes. For example, we might not have enough data 
to clearly distinguish H0 and HA, whereas more data would indicate that we should reject 
H0. 
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3 A gallery of common significance tests 

We will show a number of tests. For completeness we will include the z and t tests we’ve 
already explored. You shouldn’t try to memorize these tests. Rather your goal should be to 
be able to find the correct test when you need it. Pay attention to the types of hypotheses 
the tests are designed to distinguish and the assumptions about the data needed for the 
test to be valid. 

The null distributions for all of these tests are all related to the normal distribution by 
explicit formulas. We will not go into the details of these distributions since, given the 
name of any distribution, you can easily look up the details of its construction and properties 
online. You can also use R to explore the distribution numerically and graphically. 

3.1	 z-test 

• Use: Compare the data mean to an hypothesized mean. 

• Data: x1, x2, . . . , xn. 

•	 Assumptions: The data are independent normal samples:
 
xi ∼ N(µ, σ2) where µ is unknown, but σ is known.
 

• H0: For a specified µ0, µ = µ0. 

•	 HA:
 
Two-sided: µ = µ0
 

one-sided-greater: µ > µ0
 

one-sided-less: µ < µ0
 

x − µ0• Test statistic: z = √ 
σ/ n 

• Null distribution: f(z | H0) is the pdf of Z ∼ N(0, 1). 

•	 p-value: 
Two-sided: p = P (|Z| > z) = 2*(1-pnorm(abs(z), 0, 1)) 
one-sided-greater: p = P (Z > z) = 1 - pnorm(z, 0, 1) 
one-sided-less: p = P (Z < z) = pnorm(z, 0, 1) 

Example 1. We quickly reprise our example from the class 17 notes. 

IQ is normally distributed in the population according to a N(100, 152) distribution. We 
suspect that most MIT students have above average IQ so we frame the following hypothe­
ses. 
H0	 = MIT student IQs are distributed identically to the general population 

= MIT IQ’s follow a N(100, 152) distribution. 
HA	 = MIT student IQs tend to be higher than those of the general population 

= the average MIT student IQ is greater than 100. 

Notice that HA is one-sided. 

Suppose we test 9 students and find they have an average IQ of x̄ = 112. Can we reject H0 

at a significance level α = .05? 
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answer: Our test statistic is 

x̄− 100 36 
z = √ = = 2.4. 

15/ 9 15 

The right-sided p-value is thereofre 

p = P (Z ≥ 2.4) = 1- pnorm(2.4,0,1) = 0.0081975. 

Since p ≤ α we reject the null hypothesis in favor of the alternative hypothesis that MIT 
students have higher IQs on average. 

3.2	 One-sample t-test of the mean 

•	 Use: Compare the data mean to an hypothesized mean. 

•	 Data: x1, x2, . . . , xn. 

•	 Assumptions: The data are independent normal samples:
 
xi ∼ N(µ, σ2) where both µ and σ are unknown.
 

•	 H0: For a specified µ0, µ = µ0 

•	 HA:
 
Two-sided: µ = µ0
 

one-sided-greater: µ > µ0
 

one-sided-less:	 µ < µ0
 

x − µ0
•	 Test statistic: t = √ ,
s/ n 

n 
2where s2 is the sample variance: s	 =

1 
(xi − x)2 

n − 1 
i=1 

•	 Null distribution: f(t | H0) is the pdf of T ∼ t(n − 1).
 
(Student t-distribution with n − 1 degrees of freedom)
 

•	 p-value:
 
Two-sided: p = P (|T | > t) = 2*(1-pt(abs(t), n-1))
 
one-sided-greater: p = P (T > t) = 1 - pt(t, n-1)
 
one-sided-less: p = P (T < t) = pt(t, n-1)
 

Example 2. Look in the class 18 notes or slides for an example of this test. 

3.3	 Two-sample t-test for comparing means (assuming equal variance) 

•	 Use: Compare the data means from two groups. 

•	 Data: x1, x2, . . . , xn and y1, y2, . . . , ym. 

•	 Assumptions: Both groups of data are independent normal samples:
 

xi ∼ N(µx, σ
2)
 

yj ∼ N(µy, σ
2)
 

where both µx and µy are unknown and possibly different. The variance σ is unknown, 
but the same for both groups. 

6=



 

4 18.05 class 19, Null Hypothesis Significance Testing III, Spring 2014 

•	 H0: µx = µy 

•	 HA:
 
Two-sided: µx = µy
 

one-sided-greater: µx > µy
 

one-sided-less: µx < µy
 

x − ȳ•	 Test statistic: t = ,
 
sP
 

2 2	 2where s and s are the sample variances and s is (sometimes called) the pooled x y	 P 
sample variance:   2 2(n − 1)s + (m − 1)s

2 x y 1 1 
s	 = +p n + m − 2 n m

•	 Null distribution: f(t | H0) is the pdf of T ∼ t(n + m − 2). 

•	 p-value:
 
Two-sided: p = P (|T | > t) = 2*(1-pt(abs(t), n+m-2))
 
one-sided-greater: p = P (T > t) = 1 - pt(t, n+m-2)
 
one-sided-less: p = P (T < t) = pt(t, n+m-2)
 

Notes: 1. There is a form of the t-test for when the variances are not assumed equal. It is 
sometimes called Welch’s t-test. 
2. When the data naturally comes in pairs (xi, yi), one uses the paired two-sample t-test. 
For example, in comparing two treatments, each patient receiving treatment 1 might be 
paired with a patient receiving treatment 2 who is similar in terms of stage of disease, age, 
sex, etc. 

Example 3. Look in the class 18 notes or slides for an example of this test. 

3.4	 One-way ANOVA (F -test for equal means) 

•	 Use: Compare the data means from n groups with m data points in each group. 

•	 Data: 
x1,1, x1,2, . . . , x1,m 

x2,1, x2,2, . . . , x2,m 

. . . 
xn,1, xn,2, . . . , xn,m 

•	 Assumptions: Data for each group is an independent normal sample drawn from 
distributions with (possibly) different means but the same variance: 

x1,j ∼ N(µ1, σ
2) 

x2,j ∼ N(µ2, σ
2) 

. . . 
xn,j ∼ N(µn, σ

2) 

The group means µi are unknown and possibly different. The variance σ is unknown, 
but the same for all groups. 

•	 H0: All the means are identical µ1 = µ2 = . . . = µn. 

•	 HA: Not all the means are the same. 
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MSB•	 Test statistic: w = , whereMSW 

x̄i = mean of group i 
xi,1 + xi,2 + . . . + xi,m 

=	 . 
m 

x = grand mean of all the data. 
2si = sample variance of group i 

m
1 

= (xi,j − x̄i)
2 . 

m − 1 
j=1 

MSB = between group variance 
= m × sample variance of group means 

n 
m 

= (x̄i − x)2 . 
n − 1 

i=1 
MSW = average within group variance 

2 2= sample mean of s1, . . . , sn 
2 2 2s1 + s2 + . . . + sn = 

n 
•	 Idea: If the µi are all equal, this ratio should be near 1. If they are not equal then 

MSB should be larger while MSW should remain about the same, so w should be 
larger. We won’t give a proof of this. 

•	 Null distribution: f(w | H0) is the pdf of W ∼ F (n − 1, n(m − 1)). 
This is the F -distribution with (n − 1) and n(m − 1) degrees of freedom. Several 
F -distributions are plotted below. 

•	 p-value: p = P (W > w) = 1- pf(w, n-1, n*(m-1))) 
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F(10,15)
F(30,15)

Notes: 1. ANOVA tests whether all the means are the same. It does not test whether 
some subset of the means are the same. 
2. There is a test where the variances are not assumed equal. 
3. There is a test where the groups don’t all have the same number of samples. 
4. R has a function aov() to run ANOVA tests. See: 
https://personality-project.org/r/r.anova.html#oneway 
http://en.wikipedia.org/wiki/F-test 

Example 4. The table shows patients’ perceived level of pain (on a scale of 1 to 6) after 
3 different medical procedures. 

∑

∑

https://personality-project.org/r/r.anova.html#oneway
http://en.wikipedia.org/wiki/F-test
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T1 T2 T3 

2 3 2 
4 4 1 
1 6 3 
5 1 3 
3 4 5 

(1) Set up and run an F-test comparing the means of these 3 treatments. 

(2) Based on the test, what might you conclude about the treatments? 

answer: Using the code below, the F statistic is 0.325 and the p-value is 0.729 At any 
reasonable significance level we will fail to reject the null hypothesis. 

Note, it is not reasonable to conclude the the null hypothesis is true. With just 5 data 
points per procedure we might simply lack the power to distinguish different means. 

R code to perform the test 
#DATA ---­
T1 = c(2,4,1,5,3)
 
T2 = c(3,4,6,1,4)
 
T3 = c(2,1,3,3,5)
 

# One way ANOVA by hand ---­
# Make sure all the groups are the same size
 
if (length(T1) != length(T2) || length(T2) != length(T3))
 

stop("lengths are not equal", call.= F) 
m = length(T1) 
n = 3 
group.means = c(mean(T1), mean(T2), mean(T3)) 
group.vars = c(var(T1), var(T2), var(T3)) 
betweenGroupVar = m*var(group.means) aveWithinGroupVar = mean(group.vars) 
fstat = betweenGroupVar/aveWithinGroupVar 
p = 1-pf(fstat, n-1,n*(m-1)) 
print(fstat) 
print(p) 

3.5 Chi-square test for goodness of fit 

The distribution associated to this test is the chi-square distribution. It is denoted by χ2(df) 
where the parameter df is called the degrees of freedom. 

Suppose we have an unknown probability mass function given by the following table. 

Outcomes ω1 ω2 . . . ωn 

Probabilities p1 p2 . . . pn 

In the chi-square test for goodness of fit we hypothesize a set of values for the probabilities. 
Typically we will hypothesize that the probabilities follow a known distribution with certain 
parameters, e.g. binomial, Poisson, multinomial. The test then tries to determine if this 
set of probabilities could have reasonably generated the data we collected. 
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•	 Use: Test whether discrete data fits a specific finite probability mass function. 

•	 Data: An observed count Oi for each possible outcome ωi. 

•	 Assumptions: None 

•	 H0: The data was drawn from a specific discrete distribution. 

•	 HA: The data was drawn from a different distribution 

•	 Test statistic: The data consists of observed counts Oi for each ωi. From the null hy­
pothesis probability table we get a set of expected counts Ei. There are two statistics 
that we can use: 

Oi
Likelihood ratio statistic G = 2 ∗ Oi ln 

Ei 

(Oi − Ei)
2 

Pearson’s chi-square statistic X2 = . 
Ei 

It is a theorem that under the null hypthesis X2 ≈ G and both are approximately 
chi-square. Before computers, X2 was used because it was easier to compute. Now, 
it is better to use G although you will still see X2 used quite often. 

•	 Degrees of freedom df : Significance tests check whether the observed data is extreme 
compared to what is expected under the null hypothesis. For chi-square tests this 
requires considering all the possible cell counts consistent with the way we compute 
the expected cell counts. The degrees of freedom is the number of cell counts we 
can freely set and maintain consistency. More precisely, the degrees of freedom is the 
number of cells minus the number of parameters computed from the data. This will 
become more clear as we work examples. 

Here are two quick examples. Both use the following data, showing a set of outcomes 
and observed counts for these outcomes. 

Outcomes 
Observed counts 

0 
8 

1 
12 

2 
12 

3 
8 

4 
6 

≥ 5 
5 

Example 5. Suppose H0 specifies that the counts are from a binomial(8, .5) distri­
bution. There are 6 cells and we always need the total expected count to equal the 
total observed count. Nothing else is computed from the data so there are 6 − 1 = 5 
degrees of freedom. That is, we could set 5 of the cell counts freely and then the last 
one must be set to give the correct total. 

Example 6. This time we’ll have H0 be that the observations are all drawn from a 
binomial(8,θ) distribution. We then have to estimate θ from the data. (We’ll use the 
MLE.). This time we compute two values from the data: the total number of counts 
and the estimate of θ. So, the degrees of freedom is 6 − 2 = 4. 

•	 Null distribution: Assuming H0, both statistics (approximately) follow a chi-square 
distribution with df degrees of freedom. That is both f(G | H0) and f(X2 | H0) have 
the same pdf as Y ∼ χ2(df). 

•	 p-value: 
p = P (Y > G) = 1 - pchisq(G, df) 
p = P (Y > X2) = 1 - pchisq(X2 , df) 

∑ ( )
∑
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Example 7. Mendel’s genetic experiments (Adapted from Rice Mathematical Statis­
tics and Data Analysis, 2nd ed., example C, p.314) 

In one of his experiments on peas Mendel crossed 556 smooth, yellow male peas with 
wrinkled green female peas. Assuming the smooth and wrinkled genes occur with equal 
frequency we’d expect 1/4 of the pea population to have two smooth genes (SS), 1/4 to 
have two wrinkled genes (ss), and the remaining 1/2 would be heterozygous Ss. We also 
expect these fractions for yellow (Y ) and green (y) genes. If the color and smoothness 
genes are inherited independently and smooth and yellow are both dominant we’d expect 
the following table of frequencies for phenotypes. 

Yellow Green 
Smooth 9/16 3/16 3/4 
Wrinkled 3/16 1/16 1/4 

3/4 1/4 1 
Probability table for the null hypothesis 

So from the 556 crosses the expected number of smooth yellow peas is 556 × 9/16 = 312.75. 
Likewise for the other possibilities. Here is a table giving the observed and expected counts 
from Mendel’s experiments. 

Observed count Expected count 
Smooth yellow 315 312.75 
Smooth green 108 104.25 
Wrinkled yellow 102 104.25 
Wrinkled green 31 34.75 

The null hypothesis is that the observed counts are random samples distributed according 
to the frequency table given above. We use the counts to compute our statistics 

The likelihood ratio statistic is 

Oi
G = 2 ∗ Oi ln 

Ei 

315 108 102 31 
= 2 ∗ 315 ln + 108 ln + 102 ln + 31 ln 

412.75 104.25 104.25 34.75 

= .618 

Pearson’s chi-square statistic is 

(Oi − Ei)
2 2.75 3.75 2.25 3.75 

X2 = = + + + = .604 
Ei 312.75 104.25 104.25 34.75 

You can see that the two statistics are very close. This is usually the case. In general the 
likelihood ratio statistic is more robust and should be preferred. 

Under the null hypothesis G follows a χ2(3) distribution*. Using R to compute the p-value 
we get 

p = 1- pchisq(.618, 3) = .892 

Assuming the null hypothesis we would see data at least this extreme almost 90% of the 
time. We would not reject the null hypothesis for any reasonable significance level. 

∑ ( )
( ( ) ( ) ( ) ( ))

∑
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The p-value using Pearson’s statistic is .985 –nearly identical.
 

Here is the R-code we used to do the computations in this example.
 
n = 556
 
prob = c(9,3,3,1)/16
 
observed = c(315,108,102,31)
 
expected = n*prob
 

# Likelihood ratio statistic
 
likRatioStat = 2*sum(observed*log(observed/expected))
 
p likRatio = 1-pchisq(likRatioStat,3)
 
print(likRatioStat)
 
print(p likRatio)
 

# Pearsons X2 statistic
 
X2 = sum((observed-expected)^2/expected)
 
p pearson = 1- pchisq(X2,3)
 
print(observed)
 
print(expected)
 
print(X2)
 
print(p pearson)
 

*The number of degrees of freedom comes because there are four cells (one for each pheno­
type) and one relation among them (they sum to the total number of 556). 
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