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1 Learning Goals 

1. Be able to list the steps common to all null hypothesis significance tests. 

2. Be able to define and compute the probability of Type I and Type II errors. 

3. Be able to look up and apply one and two sample t-tests. 

2 Introduction 

We continue our study of significance tests. In these notes we will introduce two new tests: 
one-sample t-tests and two-sample t-tests. You should pay careful attention to the fact that 
every test makes some assumptions about the data – often that is drawn from a normal 
distribution. You should also notice that all the tests follow the same pattern. It is just the 
computation of the test statistic and the type of the null distribution that changes. 

3 Review: setting up and running a significance test 

There is a fairly standard set of steps one takes to set up and run a null hypothesis signifi­
cance test. 

1. Design an experiment to collect data and choose a test statistic	 x to be computed 
from the data. The key requirement here is to know the null distribution f(x|H0). 
To compute power, one must also know the alternative distribution f(x|HA). 

2. Decide if the test is one or two-sided based on HA and the form of the null distribution. 

3. Choose a significance level α for rejecting the null hypothesis. If applicable, compute 
corresponding the power of the test. 

4. Run the experiment to collect data x1, x2, . . . , xn. 

5. Compute the test statistic x. 

6. Compute the p-value corresponding to x using the null distribution. 

7. If p < α, reject the null hypothesis in favor of the alternative hypothesis. 

Notes. 
1. Rather than choosing a significance level, you could instead choose a rejection region and 
reject H0 if x falls in this region. The corresponding significance level is then the probability 
that x falls in the rejection region. 
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2. The null hypothesis is often the ‘cautious hypothesis’. The lower we set the significance 
level, the more “evidence” we will require before rejecting our cautious hypothesis in favor 
of a more sensational alternative. It is standard practice to publish the p value itself so that 
others may draw their own conclusions. 

3. A key point of confusion: A significance level of 0.05 does not mean the test only 
makes mistakes 5% of the time. It means that if the null hypothesis is true, then  the  
probability the test will mistakenly reject it is 5%. The power of the test measures the 
accuracy of the test when the alternative hypothesis is true. Namely, the power of the 
test is the probability of rejecting the null hypothesis if the alternative hypothesis is true. 
Therefore the probability of falsely accepting the null hypothesis is 1 minus the power. 

Errors. We can summarize these two types of errors and their probabilities as follows: 
Type I error = rejecting H0 when H0 is true. 
Type II error = failing to reject H0 when HA is true. 

P(type I error)	 = probability of falsely rejecting H0  
= P(test statistic is in the rejection region | H0)  
= significance level of the test  

P(type II error)	 = probability of falsely not rejecting H0  
= P(test statistic is in the acceptance region | HA)  
= 1  - power.   

Helpful analogies. In terms of medical testing for a disease, a Type I error is a false 
positive and a Type II error is a false negative. In terms of a jury trial, a Type I error is 
convicting an innocent defendant and a Type II error is acquitting a guilty defendant. 

Understanding a significance test 

Questions to ask: 

1. How did they collect data? What is the experimental setup? 

2. What are the null and alternative hypotheses? 

3. What type of significance test was used?  
Does their data match the criteria needed to use this type of test?  
How robust is the test to deviations from this criteria.  

4. For example, some tests comparing two groups of data assume that the groups are 
drawn from distributions that have the same variance. This needs to be verified before 
applying the test. Often the check is done using another significance test designed to 
compare the variances of two groups of data. 

5. How is the p-value computed? 
A significance test comes with a test statistic and a null distribution. In most tests 
the p-value is 

p = P (data at least as extreme as what we got | H0) 
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What does ‘data at least as extreme as the data we saw,’ mean? I.e. is the test one 
or two-sided. 

6. What is the significance level	 α for this test? If p < α  then the experimenter will 
reject H0 in favor of HA. 

5 t tests 

Many significance tests assume that the data are drawn from a normal distribution, so 
before using such a test you should examine the data to see if the normality assumption is 
reasonable. We will describe how to do this in more detail later, but a plotting histogram 
is a good start. Like the z-test, the one-sample and two-sample t-tests we’ll consider below 
start from this normality assumption. 

We don’t expect you to memorize all the computational details of these tests and those to 
follow. In real life, you have access to textbooks, google, and wikipedia; on the exam, you’ll 
have your notecard. Instead, you should be able to identify when a t test is appropriate 
and apply this test after looking up the details and using a table or software like R. 

5.1 z-test 

Let’s first review the z-test. 

•	 Data: we assume  
x1, x2, . . . , xn ∼ N(μ, σ2),  

where μ is unknown and σ is known. 

•	 Null hypothesis: μ = μ0 for some specific value μ0  

x− μ0 •	 Test statistic: z = √ = standardized mean 
σ/ n 

•	 Null distribution: f(z | H0) is the  pdf of  Z ∼ N(0, 1) 

•	 One-sided p-value (right side): p = P (Z > z | H0)  
One-sided p-value (left side): p = P (Z < z | H0)  
Two-sided p-value: p = P (|Z| > |z|).  

Example 1. Suppose that we have data that follows a normal distribution of unknown 
mean μ and known variance 4. Let the null hypothesis H0 be that μ = 0. Let the alternative 
hypothesis HA be that μ > 0. Suppose we collect the following data: 

1, 2, 3, 6, −1 

At a significance level of α = 0.05, should we reject the null hypothesis? 

answer: There are 5 data points with average x = 2.2. Because we have normal data with 
a known variance we should use a z test. Our z statistic is 

x− μ0 2.2 − 0 
z = √ = √ = 2.460 

σ/ n 2/ 5 
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Our test is one-sided because the alternative hypothesis is one-sided. So (using R) our 
p-value is 

p = P (Z > z) =  P (Z >  2.460) = 0.007 

Since p < .05, we reject the null hypothesis in favor of the alternative hypothesis μ > 0. 

We can visualize the test as follows: 
f(z|H0) ∼ Norm(0, 1) 

z 
1.645 2.46 

reject H0don’t reject H0 

Rejection region starts at q.95 = 1.645. 
α = pink + red = .05 
z = black dot = 2.46 
p = red  = .007  

5.2 The Student t distribution 

‘Student’ is the pseudonym used by the William Gosset who first described this test and 
this test and distribution. See http://en.wikipedia.org/wiki/Student’s_t-test 

The t-distribution is symmetric and bell-shaped like the normal distribution. It has a 
parameter df which stands for degrees of freedom. For df small the t-distribution has more 
probability in its tails than the standard normal distribution. As df increases t(df) becomes 
more and more like the standard normal distribution. 

Here is a simple applet that shows t(df) and compares it to the standard normal distribution: 

As usual in R, the functions pd, dt, qt, rt correspond to cdf, pdf, quantiles, and random 
sampling for a t distribution. Remember that you can type ?dt in RStudio to view the help 
file specifying the parameters of dt. For example, pt(2,3) computes the probability that 
x is less than or equal 2 given that x is sampled from the t distribution with 3 degrees of 
freedom, i.e. P (x ≤ 2 | x ∼ t(3)). 

5.3 One sample t-test 

For the z-test, we assumed that the variance of the underlying distribution of the data was 
known. However, it is often the case that we don’t know σ and therefore we must estimate 
it from the data. In these cases, we use a one sample t-test instead of a z-test and the 
studentized mean in place of the standardized mean 

•	 Data: we assume  
x1, x2, . . . , xn ∼ N(μ, σ2),  

where both μ and σ are unknown. 

• Null hypothesis: μ = μ0 for some specific value μ0 

http://ocw.mit.edu/ans7870/18/18.05/s14/applets/t-jmo.html

http://ocw.mit.edu/ans7870/18/18.05/s14/applets/t-jmo.html
http://en.wikipedia.org/wiki/Student�s_t-test


5 18.05 class 18, Null Hypothesis Significance Testing II, Spring 2014 

•	 Test statistic: 
x− μ0 

t = √ 
s/ n 

where 
n 

2 s	 =
1 

(xi − x)2 . 
n− 1 

i=1 

Here t is called the Studentized mean and s2 is called the sample variance. The latter 
2is an estimate of the true variance σ . 

•	 Null distribution: f(t | H0) is the  pdf of  T ∼ t(n − 1), the t distribution with n − 1 
degrees of freedom.* 

•	 One-sided p-value (right side): p = P (T > t | H0)  
One-sided p-value (left side): p = P (T < t | H0)  
Two-sided p-value: p = P (|T | > |t|).  

*It’s a theorem (not an assumption) that the Studentized mean follows a t-distribution under 
the null hypothesis. The assumption (or hypothesis of the theorem) is that the data is drawn 
from a normal distribution. A proof would take us too far afield, but you can look it up if 
you want: http://en.wikipedia.org/wiki/Student’s_t-distribution#Derivation 

Example 2. Now suppose that in the previous example the variance is unknown. That 
is, we have data that follows a normal distribution of unknown mean μ and and unknown 
variance σ. Suppose we collect the same data as before: 

1, 2, 3, 6, −1 

As above, let the null hypothesis H0 be that μ = 0 and the alternative hypothesis HA be 
that μ > 0. At a significance level of α = 0.05, should we reject the null hypothesis? 

answer: There are 5 data points with average x = 2.2. Because we have normal data with 
unknown mean and unknown variance we should use a one-sample t test. Computing the 
sample variance we get 

1 (2 s	 = (1 − 2.2)2 + (2  − 2.2)2 + (3  − 2.2)2 + (6  − 2.2)2 + (−1 − 2.2)2
) 
= 6.7 

4 

Our t statistic is 
x− μ 2.2 − 00 

t = √ = √ √ = 1.901 
s/ n 6.7/ 5 

Our test is one-sided because the alternative hypothesis is one-sided. So (using R) the 
p-value is 

p = P (T > t) =  P (T > 1.901) = 1-pt(1.901,4) = 0.065 

Since p > .05, we do not reject the null hypothesis. 

We can visualize the test as follows: 

http://en.wikipedia.org/wiki/Student�s_t-distribution#Derivation
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z 

f(t|H0) ∼ t(4) 

2.131.90 
reject H0don’t reject H0 

Rejection region starts at q.95 = 2.13. 
α = red  = .05  
t = black dot = 1.90 
p = pink + red = 0.065 

5.4 Two-sample t-test with equal variances 

We next consider the case of comparing the means of two samples. For example, we might 
be interested in comparing the mean efficacies of two medical treatments. 

•	 Data: We assume we have two sets of data drawn from normal distributions 

x1, x2, . . . , x  2∼ N(μ , σ  )1n 

y1, y2, . . . , ym ∼ N(μ2, σ
2) 

where the means μ1 and μ2 and the variance σ2 are all unknown. Notice the assump­
tion that the two distributions have the same variance. Also notice the there are n 
samples in the first group and m samples in the second. 

•	 Null hypothesis: μ1 = μ2 (the values of  μ1 and μ2 are not specified) 

•	 Test statistic: 
x− ȳ

t = , 
sp 

where s 2 
p

yx

is the pooled variance 
  2 2(n− 1)s + (m− 1)s 1 1 2 s  =  + p n+ m− 2 n m 

2 2Here s and s are the sample variances of the xi and yj respectively. The expression x y

yx

for t is somewhat complicated, but the basic idea remains the same and it still results 
in a known null distribution. 

•	 Null distribution: f(t | H0) is the  pdf of  T ∼ t(n+ m− 2). 

•	 One-sided p-value (right side): p = P (T > t | H0)  
One-sided p-value (left side): p = P (T < t | H0)  
Two-sided p-value: p = P (|T | > |t|).  

Note 1: Some authors use a different notation. They define the pooled bariance as 

2 2(n− 1)s + (m− 1)s
2 sp-other-authors = 

n+ m− 2  



  
2 774(7.77) + 632(4.95) 1 1 
s = + = .0187p 1406 775 633 
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and what we called the pooled variance they point out is the estimated variance of x − ȳ. 
That is, 

2 2 sp = sp-other-authors × (1/n + 1/m) ≈ sx−ȳ

Note 2: There is a version of the  two-sample  t-test that allows the two groups to have 
different variances. In this case the test statistic is a little more complicated but R will 
handle it with equal ease. 

Example 3. The following data comes from a real study in which 1408 women were 
admitted to a maternity hospital for (i) medical reasons or through (ii) unbooked emergency 
admission. The duration of pregnancy is measured in complete weeks from the beginning 
of the last menstrual period. We can summarize the data as follows: 

Medical: 775 observations with x̄M = 39.08 and s2 = 7.77.M 

Emergency: 633 observations with x̄E = 39.60 and s2 = 4.95E 

Set up and run a two-sample t-test to investigate whether the mean duration differs for the  
two groups.  

What assumptions did you make?  

answer: The pooled variance for this data is  

The t statistic for the null distribution is 
x̄M − ȳE 

= −3.8064 
sp 

We have 1406 degrees of freedom. Using R to compute the two-sided p-value we get 

p = P (|T | > |t|) =  2*dt(-3.8064, 1406) = 0.00015 

p is very small, much smaller than α = .05 or α = .01. Therefore we reject the null 
hypothesis in favor of the alternative that there is a difference in the mean durations. 

Rather than compute the two-sided p-value exactly using a t-distribution we could have 
noted that with 1406 degrees of freedom the t distribution is essentially standard normal 
and 3.8064 is almost 4 standard deviations. So 

P (|t| ≥ 3.8064) ≈ P (|z| ≥ 3.8064) < .001 

We assumed the data was normal and that the two groups had equal variances. Given the 
large difference between the sample variances this assumption may not be warranted. 

In fact, there are other significance tests that test whether the data is approximately normal 
and whether the two groups have the same variance. In practice one might apply these first 
to determine whether a t test is appropriate in the first place. We don’t have time to go 
into normality tests here, but we will see the F distribution used for equality of variances 
next week. 

http://en.wikipedia.org/wiki/Normality_test 
http://en.wikipedia.org/wiki/F-test_of_equality_of_variances 

( )

http://en.wikipedia.org/wiki/F-test_of_equality_of_variances
http://en.wikipedia.org/wiki/Normality_test
http:774(7.77
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