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1 Learning Goals 

1. Know the definitions of the significance testing terms: NHST, null hypothesis, alternative 
hypothesis, simple hypothesis, composite hypothesis, significance level, power. 

2. Be able to design and run a significance test for Bernoulli or binomial data. 

3. Be able to compute a p-value for a normal hypothesis and use it in a significance test. 

2 Introduction 

Frequentist statistics is often applied in the framework of null hypothesis significance testing 
(NHST). We will look at the Neyman-Pearson paradigm which focuses on one hypothesis 
called the null hypothesis. There are other paradigms for hypothesis testing, but Neyman-
Pearson is the most common. Stated simply, this method asks if the data is well outside 
the region where we would expect to see it under the null hypothesis. If so, then we reject 
the null hypothesis in favor of a second hypothesis called the alternative hypothesis. 

The computations done here all involve the likelihood function. There are two main differ­
ences between what we’ll do here and what we did in Bayesian updating. 

1. The evidence of the data will be considered purely through the likelihood function it 
will not be weighted by our prior beliefs. 

2. We will need a notion of extreme data, e.g. 95 out of 100 heads in a coin toss or a Mayfly 
that lives for a month. 

many similarities to the computations we did for confidence intervals. In fact, confidence 
intervals can be used in one type of significance testing. 

2.1 Motivating examples 

Example 1. Suppose you want to decide whether a coin is fair. If you toss it 100 times 
and get 85 heads, would you think the coin is likely to be unfair? What about 60 heads? Or 
52 heads? Most people would guess that 85 heads is strong evidence that the coin is unfair, 
whereas 52 heads is no evidence at all. Sixty heads is less clear. NHST is a frequentist 
approach to thinking quantitatively about these questions. 

Example 2. Suppose you want to compare a new medical treatment to a placebo or the 
current standard of care. What sort of evidence would convince you that the new treatment 
is better than the placebo or the current standard? Again NHST is a quantitative framework 
for answering these questions. 
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3 Significance testing 

We’ll start by listing the ingredients for NHST. Formally they are pretty simple. There is 
an art to choosing good ingredients. We will explore the art in examples. 

3.1 Ingredients 

•	 H0: the  null hypothesis. This is the default assumption for the model generating the 
data. 

•	 HA: the  alternative hypothesis. If we reject the null hypothesis we accept this alter­
native as the best explanation for the data. 

•	 X: the  test statistic. We compute this from the data. 

•	 Null distribution: the probability distribution of X assuming H0. 

•	 Rejection region: if  X is in the rejection region we reject H0 in favor of HA. 

•	 Acceptance region: the complement to the rejection region. If X is in this region we 
do not reject H0. Note that we say ‘do not reject’ rather than ‘accept’ because usually 
the best we can say is that the data does not support rejecting H0. We’ll still use the 
term ‘acceptance region’, because it is simpler than ‘non-rejection region’. 

The null hypothesis H0 and the alternative hypothesis HA play different roles. Typically 
we choose H0 to be either a simple hypothesis or the default which we’ll only reject if we 
have enough evidence against it. The examples below will clarify this. 

Example 3. The diagram below illustrates a null distribution with acceptance and rejection 
regions. 

f(x|H0) 

x 
0-3 3x1x2 

reject H0 reject H0accept H0 

The test statistic x1 is in the acceptance (technically, non-rejection) region. So, if our data 
produces the test statistic x1 then we will not reject the null hypothesis H0. On the other 
hand the test statistic x2 is in the rejection region, so if our data produces this test statistic 
we will reject the null hypothesis in favor of the alternative hypothesis. 

There are several things to note in this picture. 
1. The rejection region consists of values far from the center of the null distribution. 
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2. The rejection region is two-sided. We will also see examples of one-sided rejection regions 
as well. 
3. The alternative hypothesis is not mentioned. We accept or reject H0 based only on 
f(x|H0), the likelihood of the test statistic conditioned on H0. As we will see, the alternative 
hypothesis HA should be considered when choosing a rejection region, but formally it only 
comes in when deciding how much weight to give the conclusion of the test. 

NHST Terminology 

In this section we will use one extended example to introduce and explore the terminology 
used in NHST. 

Example 4. To test whether a coin is fair we flip it 10 times. If we get an unexpectedly 
large or small number of heads we’ll suspect the coin is unfair. To make this precise in the 
language of NHST we set up the ingredients as follows. Let θ be the probability that the 
coin lands heads when flipped. 

1. Null hypothesis: H0 = ‘the coin is fair’, i.e. θ = .5. 
2. Alternative hypothesis: HA = ‘the coin is not fair’, i.e. θ � 5= .
3. Test statistic: X = number of heads in 10 flips 
4. Null distribution: This is the probability function based on the null hypothesis 

p(x | θ = .5) ∼ binomial(10, .5). 
Here is the probability table for the null distribution. 

x 0 1 2 3 4 5 6 7 8 9 10 
.001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001p(x | H0) 

5. Rejection region: under the null hypothesis we expect to get about 5 heads in 10 tosses. 
We’ll reject H0 if the number of heads is much fewer or greater than 5. Let’s set the rejection 
region as {0, 1, 2, 8, 9, 10}. That is, if the number of heads in 10 tosses is in this region we 
will reject the hypothesis that the coin is fair in favor of the hypothesis that it is not. 

We can summarize all this in the graph and probability table below. Both we show the null 
distribution in a probability table. The rejection region consists of those values of x in red. 
The probabilities corresponding to it are shaded in red. We also show the null distribution 
as a stem plot with the rejection values of x in red. 

x 0  1  2  3  4  5  6  7  8  9  10  

p(x|H0) .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001 

Rejection region and null probabilities as a table for example 4.
 

x 

p(x | H0) 

.05 

.15 

.25 

0 1 2 3 4 5 6 7 8 9 10 

Rejection region and null probabilities as a stemp plot for example 4.
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Notes for example 4: 
1. The null hypothesis is the cautious default: we won’t claim the coin is unfair unless we 
have good evidence. 
2. The rejection region consists of data that is extreme under the null hypothesis. That is, 
it consists of the outcomes that are in the tail of the null distribution away from the high 
probability center. As we’ll discuss soon, how far away depends on the significance level α 
of the test. 
3. If we get 3 heads in 10 tosses, then the test statistic is in the acceptance region. The 
usual scientific language would be to say that the data ‘does not support rejecting the null 
hypothesis’. Even if we got 5 heads, we would not claim that the data proves the null 
hypothesis is true. 

Question: If we have a fair coin what is the probability that we will decide incorrectly it 
is unfair? 

answer: The null hypothesis is that the coin is fair. The probability that for such a coin 
the data will land in the rejection region is the sum of the probabilities in red. That is, 
P (rejecting H0 | H0 is true) = .11 

Below we will continue with Example 4, define more terms used in NHST and see how to 
quantify properties of the significance test. 

4.1 Simple and composite hypotheses 

Definition: simple hypothesis: A simple hypothesis is one for which we can specify its
 
distribution completely. A typical simple hypothesis is that a parameter of interest takes a
 
specific value.
 

Definition: composite hypotheses: If its distribution cannot be fully specified, we say
 
that the hypothesis is composite. A typical composite hypothesis is that a parameter of
 
interest lies in a range of values.
 

In Example 4 the null hypothesis is that θ = .5, so the null distribution is binomial(10, .5).
 
Since the null distribution is fully specified, H0 is simple. The alternative hypothesis is
 
that θ = .5. This is really many hypotheses in one: θ could be .51, .7, .99, etc. Since the
 
alternative distribution binomial(10, θ) is not fully specified, HA is composite.
 

Example 5. Suppose we have data x1,  . . . ,  xn. Suppose also that our hypotheses are
 
H0: the data is drawn from N(0, 1)
 
HA: the data is drawn from N(1, 1).
 
These are both simple hypotheses – each hypothesis completely specifies a distribution.
 

Example 6. (Composite hypotheses.) Now suppose that our hypotheses are
 
H0: the data is drawn from a Poisson distribution of unknown parameter.
 
HA: the data is not drawn from a Poisson distribution.
 
These are both composite hypotheses, as they don’t fully specify the distribution.
 

Example 7. In an ESP experiment a subject is asked to identify the suits of 100 cards
 
drawn (with replacement) from a deck of cards. Let T be the number of successes. The
 
(simple) null hypothesis that the subject does not have ESP is given by
 

H0: T ∼ binomial(100, .25) 

http:binomial(100,.25
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The (composite) alternative hypothesis that the subject has ESP is given by 

HA: T ∼ binomial(100, p) with  p > .25 

Another (composite) alternative hypothesis that something besides pure chance is going on 
is given by 

HA: T ∼ binomial(100, p), with p = .25 

Values of p < .25 represent hypotheses that the subject has a kind of anti-esp. 

4.2 Types of error 

There are two types of errors we can make. We can incorrectly reject the null hypothesis 
when it is true or we can incorrectly fail to reject it when it is false. These are unimagina­
tively labeled type I and type II errors. We summarize this in the following table. 

True state of nature 
H0 HA 

Our Reject H0 Type I error correct decision 
decision ‘Accept’ H0 correct decision Type II error 

Type I: false rejection of H0 

Type II: false ‘acceptance’ of H0 

4.3 Significance level and power 

Significance level and power are used to quantify the quality of the significance test. Ideally 
a significance test would not make errors. That is, it would not reject H0 when H0 was true 
and would reject H0 in favor of HA when HA was true. Altogether there are 4 important 
probabilities corresponding to the 2 × 2 table just above. 

P (reject H0|H0) P (reject H0|HA) 
P (do not reject H0|H0) P (do not reject H0|HA) 

The two probabilities we focus on are: 

Significance level	 = P (reject H0|H0)
 
= probability we incorrectly reject H0
 

= P (type I error).
 

Power	 = probability we correctly reject H0
 

= P (reject H0|HA)
 
= 1  − P (type II error).
 

Ideally, a hypothesis test should have a small significance level (near 0) and a large power 
(near 1). Here are two analogies to help you remember the meanings of significance and 
power. 

Some analogies 
1. Think of H0 as the hypothesis ‘nothing noteworthy is going on’, i.e. ‘the coin is fair’, 
‘the treatment is no better than placebo’ etc. And think of HA as the opposite: ‘something 
interesting is happening’. Then power is the probability of detecting something interesting 
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when it’s present and significance level is the probability of mistakenly claiming something
interesting has occured.

2. In the U.S. criminal defendents are presumed innocent until proven guilty beyond a
reasonable doubt. We can phrase this in NHST terms as

H0: the defendent is innocent (the default)
HA: the defendent is guilty.

Significance level is the probability of finding and innocent person guilty. Power is the
probability of correctly finding a guilty party guilty. ‘Beyond a reasonable doubt’ means
we should demand the significance level be very small.

Composite hypotheses

HA is composite in Example 4, so the power is different for different values of θ. We expand
the previous probability table to include some alternate values of θ. We do the same with
the stem plots.

x 0 1 2 3 4 5 6 7 8 9 10

H0 : p(x|θ = .5) .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001

HA : p(x|θ = .6) .000 .002 .011 .042 .111 .201 .251 .215 .121 .040 .006

HA : p(x|θ = .7) .000 .0001 .001 .009 .037 .103 .200 .267 .233 .121 .028

p(x |H0)

.05

.15

.25

3 4 5 6 70 1 2 8 9 10

p(x | θ = .6)

.05

.15

.25

3 4 5 6 70 1 2 8 9 10
x

p(x | θ = .7)

.05

.15

.25

3 4 5 6 70 1 2 8 9 10

Rejection region and null and alternative probabilities for example 4

We use the probability table to compute the significance level and power of this test.

Significance level = probability we reject H0 when it is true
= probability the test statistic is in the rejection region when H0 is true
= probability in the rejection region in the H0 row of the table
= sum of red boxes in the θ = .5 row
= .11

Power when θ = .6 = probability we reject H0 when θ = .6
= probability the test statistic is in the rejection region when θ = .6
= probability in the rejection region in the θ = .6 row of the table
= sum of dark blue boxes in the θ = .6 row
= .180

Power when θ = .7 = probability we reject H0 when θ = .7
= probability the test statistic is in the rejection region when θ = .7
= shaded probability in the θ = .7 row of the table
= sum of dark green boxes in the θ = .7 row
= .384
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We see that the power is greater for θ = .7 than for  θ = .6. This isn’t surprising since we 
expect it to be easier to recognize that a .7 coin is unfair than is is to recognize .6 coin is 
unfair. Typically, we get higher power when the alternate hypothesis is farther from the 
null hypothesis. In Example 4, it would be quite hard to distinguish a fair coin from one 
with θ = .51. 

We illustrate this with the following two figures. The shaded area under f(x|H0) represents 
the significance level, i.e., the probability that the test statistic falls in the rejection region 
even though H0 is true. Likewise, the shaded area under f(x|HA) represents the power, i.e. 
the probability that the test statistic is in the rejection (of H0) region when  HA is true. 
Both tests have the same significance level, but if f(x|HA) has considerable overlap with 
f(x|H0) the power is much lower. It is well worth your while to thoroughly understand 
these graphical representations of significance testing. 

In both tests both distributions are standard normal. The null distribution, rejection region 
and significance level are all the same. (The significance level is red/purple area under 
f(x | H0 and above the rejection region.) In the top figure we see the means of the two 
distributions are 4 standard deviations apart. Since the areas under the densities have very 
little overlap the test has high power. That is if the data x is drawn from HA it will almost 
certainly be in the rejection region. For example x3 would be a very surprising outcome for 
the HA distribution. 

In the bottom figure we see the means of the two distributions are just 0.4 standard devia­
tions apart. Since the areas under the densities have a lot of overlap the test has low power. 
That is if the data x is drawn from HA it is highly likely to be in the acceptance region. 
For example x3 would be not be a very surprising outcome for the HA distribution. 

Typically we can increase the power of a test by increasing the amount of data and thereby 

x

f(x|H0)

0

f(x|HA)

-4
.reject H0 region accept H0 region

High power test

x1 x2 x3

x

f(x|H0)

0

f(x|HA)

0.4
.reject H0 region accept H0 region

Low power test

x1 x2 x3
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decreasing the variance of the null and alternative distributions. In experimental design it 
is important to determine ahead of time the number of trials or subjects needed to achieve 
a desired power. 

Example 8. Suppose a drug for a disease is being compared to a placebo. We choose our 
null and alternative hypotheses as 

H0 = the drug does not work better than the placebo 

HA = the drug works better than the placebo 

The power of the hypothesis test is the probability that the test will conclude that the drug 
is better, if it is indeed truly better. The significance level is the probability that the test 
will conclude that the drug works better, when in fact it does not. 

5 Designing a hypothesis test 

Formally all a hypothesis test requires is H0, HA, a test statistic and a rejection region. In 
practice the design is often done using the following steps. 

1. Pick the null hypothesis H0.
 
The choice of  H0 and HA is not mathematics. It’s art and custom. We often choose H0 to
 
be simple. Or we often choose H0 to be the simplest or most cautious explanation, i.e. no
 
effect of drug, no ESP, no bias in the coin.
 

2. Decide if H is one-sided or two-sided. A 

In the example 4 we wanted to know if the coin was unfair. An unfair coin could be biased 
for or against heads, so HA : θ = .5 is a two-sided hypothesis. If we only care whether or 
not the coin is biased for heads we could use the one-sided hypothesis HA : θ > .5. 

3. Pick a test statistic.
 
For example, the sample mean, sample total, or sample variance. Often the choice is obvious.
 
Some standard statistics that we will encounter are z, t, and  χ2 . We will learn to use these
 
statistics as we work examples over the next few classes. One thing we will say repeatedly
 
is that the distributions that go with these statistics are always conditioned on the null
 
hypothesis. That is, we will compute likelihoods such as f(z | H0).
 

4. Pick a significance level and determine the rejection region.
 
We will usually use α to denote the significance level. The Neyman-Pearson paradigm is to
 
pick α in advance. Typical values are .1, .05, .01. Recall that the significance level is the
 
probability of a type I error, i.e. of incorrectly rejecting the null hypothesis when it is true.
 
The value we choose will depend on the consequences of a type I error.
 

Example 9. If α = .1 then we’d expect to make a type I error in 10% of those experiments
 
where the null hypothesis was true. If you’re running an experiminent to determine if your
 
chocolate is more than 72% cocoa then a 10% error type I error rate, i.e. falsely believing
 
some 72% chocalate is greater that 72%, is probably acceptable. If your forensic lab is
 
identifying fingerprints for a murder trial then a 10% type I error rate, i.e. mistakenly
 
claiming that fingerprints found at the crime scene belonged to someone who was truly
 
innocent, is definitely not acceptable.
 

6
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If H0 is composite then P(type I error) depends on which member of H0 is true and signif­
icance level is defined as the maximum of these probabilities. 

Once the significance level is chosen we can determine the rejection region in the tail(s) of 
the null distribution. In Example 4, HA is two sided so the rejection region is split between 
the two tails of the null distribution. This distribution is given in the following table: 

x 0  1  2  3  4  5  6  7  8  9  10  

p(x|H0) .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001 

If we set α = .05 then the rejection region must contain at most .05 probability. For a 
two-sided rejection region we get 

{0, 1, 9, 10}. 
If we set α = .01 the rejection region is 

{0, 10}. 

Suppose we change HA to ‘the coin is biased in favor of heads’. We now have a one-sided 
hypothesis θ > .5. Our rejection region will now be in the right-hand tail since we don’t 
want to reject H0 in favor of HA if we get a small number of heads. Now if α = .05 the 
rejection region is the one-sided range 

{9, 10}. 
If we set α = .01 then the rejection region is 

{10}. 

5. Determine the power(s).
 
As we saw in Example 4, once the rejection region is set we can determine the power of the
 
test at various values of the alternate hypothesis.
 

6 p-values 

In practice people often specify the significance level and do the significance test using p-
values. If the p-value is less than the significance level α they reject H0. Otherwise they do 
not reject H0. 

The p-value is the probability, assuming the null hypothesis, of seeing data at least as 
extreme as the experimental data. What ‘at least as extreme’ means depends on the exper­
imental design. We illustrate the definition and use of p-values with an example. 

Example 10. The z-test for normal hypotheses 
IQ is normally distributed in the population according to a N(100, 152) distribution. We 
suspect that most MIT students have above average IQ so we frame the following hypothe­
ses. 
H0 = MIT student IQs are distributed identically to the general population 

= MIT IQ’s follow a N(100, 152) distribution. 
HA = MIT student IQs tend to be higher than those of the general population 

= the average MIT student IQ is greater than 100. 
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Notice that HA is one-sided. 

Suppose we test 9 students and find they have an average IQ of x̄ = 112. Can we reject H0 

at a significance level α = .05? 

answer: The average x̄ = 112 is the result of one experiment. If we ran the experiment 
again we could get a different value for x̄. For a one-sided alternative hypothesis the phrase 
‘data at least as extreme’ is a one-sided tail. The p-value is then 

p = P (x̄ ≥ 112 | H0). 

That is, it is the probability, assuming H0, that the experiment would produce data as 
extreme as 112. 

To compute p we standardize the data to get a z-statistic 

x̄− 100 36 
z = √ = = 2.4. 

15/ 9 15 

Under the null hypothesis x̄ ∼ N(100, 152/9) and therefore z ∼ N(0, 1). That is, the null 
distribution for z is standard normal. 

p = P (x̄ ≥ 112 | H0) =  P (z ≥ 2.4) = 1- pnorm(2.4,0,1) = 0.0081975. 

Since p ≤ α we reject the null hypothesis in favor of the alternative hypothesis that MIT 
students have higher IQs on average. We have done this at significance level .05 with a 
p-value of .008. (The computation was done in R using the function pnorm. Below we use 
the function qnorm.) 

We can rephrase this directly in terms of rejection regions. In the figure below, the rejection 
region is the shaded tail to the right of 

z.05 = qnorm(.95,0,1) = 1.65. 

The p-value is the area in the tail to the right of z = 2.4. Since z is in the rejection region, 
we reject H0. 

f(z|H0) ∼ N(0, 1) 

z 

α = pink + red = .05 
p = red  = .008  

z.05 2.4 
accept H0 reject H0 

Note that we can use the language of rejection regions or p-values because: 

z is in the rejection region if and only if p ≤ α. 
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More examples 

Hypothesis testing is widely used in inferential statistics. Read these examples quickly to 
get a sense of how it’s used. We will explore the details of these examples in class. 

Example 11. The chi square statistic and goodness of fit. (Rice, example B, p.313) 

To test the level of bacterial contamination, milk was spread over a grid with 400 squares. 
The amount of bacteria in each square was counted. We summarize in the table below. 
The bottom row of the table is the number of different squares that had a given amount of 
bacteria. 
Amount of bacteria 0 1 2 3 4 5 6 7 8 9 10 19  

Number of squares 56  104  80  62  42  27  9 9 5 3 2  1  

So the average amount of bacteria per square is 2.44. To see if these counts could come from 
a Poisson distribution we graphically compare the observed frequencies with those expected 
from Poiss(2.44). 

The picture is suggestive, so we do a hypothesis test with 

H0 : the samples come from a Poiss(2.44) distribution. 

HA : the samples come from a different distribution. 

We use a chi square statistic, so called because it (approximately) follows a chi square 
distribution. To compute X2 we first combine the last few cells in the table so that the 
minimum expected count is around 5 (a general rule-of-thumb in this game.) 

The expected number of squares with a certain amount of bacteria comes from considering 
400 trials from a Poiss(2.44) distribution, e.g., with l = 2.44 the expected number of squares 

−l l
3 

with 3 bacteria is 400 × e = 84.4. 
3! 

http:Poiss(2.44
http:Poiss(2.44
http:Poiss(2.44
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� (Oi − Ei)
2 

The chi square statistic is , where  Oi is the observed number and Ei is the 
Ei 

expected number. 

Number per square 0 1 2 3 4 5 6 > 6 

Observed 56 104 80 62 42 27 9 20 

Expected 34.9 85.1 103.8 84.4 51.5 25.1 10.2 5.0 

Component of X2 12.8 4.2 5.5 6.0 1.7 0.14 0.15 44.5 

Summing up we get X2 = 74.9.
 

Since the mean (2.44) and the total number of trials (400) are fixed, the 8 cells only have
 
6 degrees of freedom. So, assuming H0, our chi square statistic follows (approximately) a
 
χ2
6 distribution. Using this distribution, P (X2 > 74.59) = 0 (to at least 6 decimal places).
 

Thus we decisively reject the null hpothesis in favor of the alternate hypothesis that the
 
distribution is not Poiss(2.44).
 

To analyze further, look at the individual components of X2 . There are large contributions
 
in the tail of the distribution, so that is where the fit goes awry.
 

Example 12. Student’s t test. 

Suppose we want to compare a medical treatment for increasing life expectancy with a 
placebo. We give n people the treatment and m people the placebo. Let X1, . . . , Xn be the 
number of years people live after receiving the treatment. Likewise, let Y1, . . . , Ym be the 

¯ ¯number of years people live after receiving the placebo. Let X and Y be the sample means. 
¯ ¯We want to know if the difference between X and Y is statistically significant. We frame 

this as a hypothesis test. Let μX and μY be the (unknown) means. 

H0 : μX = μY , HA : μX = μY . 

With certain assumptions and a proper formula for the pooled standard error sp the test 
X̄ − Ȳ 

statistic t = follow a t distribution with n + m − 2 degrees of freedom. So our 
sp 

rejection region is determined by a threshold t0 with P (t > t0) =  α. 

6
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