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1 Learning Goals 

1. Be able to explain the difference between the frequentist and Bayesian approaches to 
statistics. 

2. Know our working definition of a statistic and be able to distinguish a statistic from a 
non-statistic. 

2 Introduction 

After much foreshadowing, the time has finally come to switch from Bayesian statistics to 
frequentist statistics. For much of the twentieth century, frequentist statistics has been the 
dominant school. If you’ve ever encountered confidence intervals, p-values, t-tests, or χ2­
tests, you’ve seen frequentist statistics. With the rise of high-speed computing and big data, 
Bayesian methods are becoming more common. After we’ve studied frequentist methods 
we will compare the strengths and weaknesses of the two approaches. 

2.1 The fork in the road 

Both schools of statistics start with probability. In particular both know and love Bayes 
theorem: 

P (D|H) P (H)
P (H|D) =  . 

P (D) 

When the prior is known exactly all statisticians will use this formula. For Bayesian inference 
we take H to be a hypothesis and D some data. Over the last few weeks we have seen that, 
given a prior and a likelihood model, Bayes theorem is a complete recipe for updating our 
beliefs in the face of new data. This works perfectly when the prior was known perfectly. We 
saw this in our dice examples. We also saw examples of a disease with a known frequency 
in the general population and a screening test of known accuracy. 

In practice we saw that there is usually no universally-accepted prior – different people 
will have different a priori beliefs – but we would still like to make useful inferences from 
data. Bayesians and frequentists take fundamentally different approaches to this challenge, 
as summarized in the figure below. 
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Everyone uses Bayes’ P (D|H)P (H)
P (H|D) =  formula when the prior 

P (D) 
is known. 

Bayesians require a prior, so 
Frequentists reject the prior and 

Bayesian path Frequentist path 

draw inferences as best they can 
they develop one from the best 

from just the likelihood function 
information they have. 

P (D|H). 

The reasons for this split are both practical (ease of implementation and computation) and 
philosophical (subjectivity versus objectivity and the nature of probability). 

2.2 What is probability? 

The main philosophical difference concerns the meaning of probability. The term frequentist 
refers to the idea that probabilities represent longterm frequencies of repeatable random 
experiments. For example, ‘a coin has probability 1/2 of heads’ means that the relative 
frequency of heads (number of heads out of number of flips) goes to 1/2 as the number of 
flips goes to infinity. This means the frequentist finds it non-sensical to specify a probability 
distribution for a parameter with a fixed value. While Bayesians are happy to use probability 
to describe their incomplete knowledge of a fixed parameter, frequentists reject the use of 
probability to quantify degree of belief in hypotheses. 

Example 1. Suppose I have a bent coin with unknown probability θ of heads. The value 
of θ may be unknown, but it is a fixed value. Thus, to the frequentist there can be no prior 
pdf f(θ). By comparison the Bayesian may agree that θ has a fixed value, but interprets 
f(θ) as representing uncertainty about that value. Both the Bayesian and the frequentist 
are perfectly happy with p(heads | θ) =  θ, since the longterm frequency of heads given θ is 
θ. 

In short, Bayesians put probability distributions on everything (hypotheses and data), while 
frequentists put probability distributions on (random, repeatable, experimental) data given 
an hypothesis. For the frequentist when dealing with data from an unknown distribution 
only the likelihood has meaning. The prior and posterior do not. 

3 Working definition of a statistic 

Our view of statistics is that it is the art of drawing conclusions (making inferences) from 
data. With that in mind we can make a simple working definition of a statistic. There is a 
more formal definition, but we don’t need to introduce it at this point. 

Statistic. A statistic is anything that can be computed from data. Sometimes to be more 
precise we’ll say a statistic is a rule for computing something from data and the value of the 
statistic is what is computed. This can include computing likelihoods where we hypothesize 
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values of the model parameters. But it does not include anything that requires we know 
the true value of a model parameter with unknown value. 

Examples. 1. The mean of data is a statistic. It is a rule that says given data x1, . . . , xn 
x1+...+xncompute . n 

2. The maximum of data is a statistic. It is a rule that says to pick the maximum value of 
the data x1, . . . , xn. 

3. Suppose x ∼ N(μ, 9) where μ is unknown. Then the likelihood 

1 − (x−7)2 

p(x|μ = 7)  =  √ e 18 

3 2π 

is a statistic. However, the distance of x from  the true mean  μ is not a statistic since we 
cannot compute it without knowing μ 

Point statistic. A point statistic is a single value computed from data. For example, the 
mean and the maximum are both point statistics. The maximum likelihood estimate is also 
a point statistic since it is computed directly from the data based on a likelihood model. 

Interval statistic. An interval statistic is an interval computed from data. For example, 
the range from the minimum to maximum of x1, . . . , xn is an interval statistic, e.g. the data 
.5, 1, .2, 3, 5 has range [.2, 5]. 

Set statistic. A set statistic is a set computed from data. 

Example. Suppose we have five dice: 4, 6, 8, 12 and 20-sided. We pick one at random and 
roll it once. The value of the roll is the data. The set of dice for which this roll is possible 
is a set statistic. For example, if the roll is a 10 then the value of this set statistic is {12, 
20}. If the roll is a 7 then this set statistic has value {8, 12, 20}. 
It’s important to remember that a statistic is itself a random variable since it is computed 
from random data. For example, if data is drawn from N(μ, σ2) then the mean of n data 
points follows N(μ, σ2/n)). 

Sampling distribution. The probability distribution of a statistic is called its sampling 
distribution. 

Point estimate. We can use statistics to make a point estimate of a parameter θ. For  
example, if the parameter θ represents the true mean then the data mean x̄ is a point 
estimate of θ. 
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