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Beta Distributions  
Class 14, 18.05, Spring 2014  

Jeremy Orloff and Jonathan Bloom  

Learning Goals 

1. Be familiar with the 2-parameter family of beta distributions and its normalization. 

2. Be able to update a beta prior to a beta posterior in the case of a binomial likelihood. 

2 Beta distribution 

The beta distribution beta(a, b) is a two-parameter distribution with range [0, 1] and pdf 

(a + b − 1)!
f(θ) = θa−1(1 − θ)b−1 

(a − 1)!(b − 1)! 

We have made an applet so you can explore the shape of the Beta distribution as you vary 
the parameters: 

As you can see in the applet, the beta distribution may be defined for any real numbers 
a > 0 and b > 0. In 18.05 we will stick to integers a and b, but you can get the full story 
here: http://en.wikipedia.org/wiki/Beta_distribution 

In the context of Bayesian updating, a and b are often called hyperparameters to distinguish 
them from the unknown parameter θ representing our hypotheses. In a sense, a and b are 
‘one level up’ from θ since they parameterize its pdf. 

2.1 A simple but important observation! 

If a pdf f(θ) has the form cθa−1(1 − θ)b−1 then f(θ) is a beta(a, b) distribution and the 
normalizing constant must be 

(a + b − 1)! 
c = . 

(a − 1)! (b − 1)! 
This follows because the constant c must normalize the pdf to have total probability 1.  
There is only one such constant and it is given in the formula for the beta distribution.  

A similar observation holds for normal distributions, exponential distributions, and so on.  

2.2 Beta priors and posteriors for binomial random variables 

Example 1. Suppose we have a bent coin with unknown probability θ of heads. We toss 
it 12 times and get 8 heads and 4 tails. Starting with a flat prior, show that the posterior 
pdf is a beta(9, 5) distribution. 
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18.05 class 14, Beta Distributions, Spring 2014 2 

answer: This is nearly identical to examples from the previous class. We’ll call the data of 
all 12 tosses x1. In the following table we call the constant factor in the likelihood column c1 
and leave it unspecified, since it will later be absorbed in the normalizing factor. Similarly, 
we write c2 for the leading constant in the posterior column. 

hypothesis prior likelihood 
unnormalized 

posterior posterior 

θ ± dθ 
2 1 · dθ c1 θ

8(1 − θ)4 c1 θ
8(1 − θ)4 dθ _ 1 

c2 θ
8(1 − θ)4 dθ 

total 1 T = 
0 

c1 θ
8(1 − θ)4 dθ 1 

Our simple observation above holds with a = 9 and b = 5. Therefore the posterior pdf 

f(θ|x1) = c2θ8(1 − θ)4 

follows a beta(9, 5) distribution and the normalizing constant c2 = c1 must be T 

13! 
c2 = . 

8! 4! 

Example 2. Now suppose we toss the same coin again, getting n heads and m tails. Using 
the posterior pdf of the previous example as our new prior pdf, show that the new posterior 
pdf is that of a beta(9 + n, 5 + m) distribution. 

answer: It’s all in the table. We’ll call the data of these n + m additional tosses x2. Again 
we leave constant factors unspecified; whenever we need a new label we simply use c with 
a new subscript. 

hyp. prior likelihood 
unnormalized 

posterior posterior 

θ ± dθ 
2 c2θ

8(1 − θ)4 dθ c3 θ
n(1 − θ)m c2c3 θ

n+8(1 − θ)m+4 dθ _ 1 

c4 θ
n+8(1 − θ)m+4 dθ 

total 1 T = 
0 

c2c3 θ
n+8(1 − θ)m+4 dθ 1 

Again our simple observation holds and therefore the posterior pdf 

f(θ|x1, x2) = c4θn+8(1 − θ)m+4 

follows a beta(n + 9,m + 5) distribution. 

Example 3. The beta(1, 1) distribution is the same as uniform distribution on [0, 1], which 
we have also called the flat prior on θ. This follows by plugging a = 1 and b = 1 into the 
definition of the beta distribution, giving f(θ) = 1. 

Summary: If the probability of heads is θ, the number of heads in n + m tosses follows a 
binomial(n + m, θ) distribution. We have seen that if the prior on θ is a beta distribution 
then so is the posterior; only the parameters a, b of the beta distribution change! We 
summarize precisely how they change in a table. 
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hypothesis data prior likelihood posterior 

θ ± dθ 
2 x = n Beta(a, b) binomial(n + m, θ) Beta(a + n, b + m) 

θ ± dθ 
2 x = n c1θ

a−1(1 − θ)b−1 dθ c2θ
n(1 − θ)m c3θ

a+n−1(1 − θ)b+m−1 dθ 

2.3 Conjugate priors 

In the literature you’ll see that the beta distribution is called a conjugate prior for the 
binomial distribution. This means that if the likelihood function is binomial, then a beta 
prior gives a beta posterior. In fact, the beta distribution is a conjugate prior for the 
Bernoulli and geometric distributions as well. 

We will soon see another important example: the normal distribution is its own conjugate 
prior. In particular, if the likelihood function is normal with known variance, then a normal 
prior gives a normal posterior. 

Conjugate priors are useful because they reduce Bayesian updating to modifying the param­
eters of the prior distribution (so-called hyperparameters) rather than computing integrals. 
We see this for the beta distribution in the last table. For many more examples see: 
http://en.wikipedia.org/wiki/Conjugate_prior_distribution 

http://en.wikipedia.org/wiki/Conjugate_prior_distribution
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