Notational conventions Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

1 Learning Goals

1. Be able to work with the various notations and terms we use to describe probabilities and likelihood.

2 Notation and terminology for data and hypotheses

The problem of labeling data and hypotheses is a tricky one. When we started the course we talked about outcomes, e.g. heads or tails. Then when we introduced random variables we gave outcomes numerical values, e.g. 1 for heads and 0 for tails. This allowed us to do things like compute means and variances. We need to do something similar now. Recall our notational conventions:

- Events are labeled with capital letters, e.g. A, B, C.
- A random variable is capital X and takes values small x.
- The connection between values and events: X = x is the event that X takes the value x.
- The probability of an event is capital P(A).
- A discrete random variable has a probability mass function small p(x) The connection between P and p is that P(X = x) = p(x).
- A continuous random variable has a probability density function f(x) The connection between P and f is that $P(a \le X \le b) = \int_a^b f(x) dx$.
- For a continuous random variable X the probability that X is in the infinitesimal interval $x \pm dx/2$ is f(x) dx.

In the context of Bayesian updating we will use similar conventions.

- We use capital letters, especially \mathcal{H} , to indicate a hypothesis, e.g. $\mathcal{H} =$ 'the coin is fair'
- We use lower case letters, especially θ , to indicate the hypothesized value of a model parameter, e.g. the probability the coin lands heads is $\theta = .5$
- We use upper case letters, especially \mathcal{D} , when talking about data as events. For example, $\mathcal{D} =$ 'the sequence of tosses was HTH.
- We use lower case letters, especially x, when talking about data as values. For example, the sequence of data was $x_1, x_2, x_3 = 1, 0, 1$.

• When the set of hypotheses is discrete we can use the probability of individual hypotheses, e.g. $p(\theta)$. When the set is continuous we need to use the probability for an infinitesimal range of hypotheses, e.g. $f(\theta) d\theta$ = probability of the range $\theta \pm d\theta/2$.

The following table summarizes this for discret θ and continuous θ . In both cases were are assuming a discrete set of possible outcomes (data) x. Tomorrow we will deal with a continuous set of outcomes.

				unnormalized	
	hypothesis	prior	likelihood	posterior	posterior
	\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$
Discrete θ :	θ	$p(\theta)$	$p(x \theta)$	$p(x \theta)p(\theta)$	$p(\theta x)$
Continuous θ :	$\theta \pm d\theta/2$	$f(\theta) d\theta$	$p(x \theta)$	$p(x \theta)f(\theta) d\theta$	$f(\theta x) d\theta$

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.