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Bayesian Updating: Probabilistic Prediction
 
Class 12, 18.05, Spring 2014
 

Jeremy Orloff and Jonathan Bloom
 

Learning Goals 

1. Be able to use the law of total probability to compute prior and posterior predictive 
probabilities. 

2 Introduction 

In the previous class we looked at updating the probability of hypotheses based on data. 
We can also use the data to update the probability of each possible outcome of a future 
experiment. In this class we will look at how this is done. 

2.1 Probabilistic prediciton; words of estimative probability (WEP) 

There are many ways to word predictions: 

•	 Prediction: “It will rain tomorrow.” 

•	 Prediction using words of estimative probability (WEP): “It is likely to rain tomor­
row.” 

•	 Probabilistic prediction: “Tomorrow it will rain with probability 60% (and not rain 
with probability 40%).” 

Each type of wording is appropriate at different times. 

In this class we are going to focus on probabilistic prediction and precise quantitative state­
ments. You can see http://en.wikipedia.org/wiki/Words_of_Estimative_Probability 
for an interesting discussion about the appropriate use of words of estimative probability. 
The article also contains a list of weasel words such as ‘might’, ‘cannot rule out’, ‘it’s 
conceivable’ that should be avoided as almost certain to cause confusion. 

There are many places where we want to make a probabilistic prediction. Examples are 

•	 Medical treatment outcomes 

•	 Weather forecasting 

•	 Climate change 

•	 Sports betting 

•	 Elections 

•	 . . .  
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These are all situations where there is uncertainty about the outcome and we would like as 
precise a description of what could happen as possible. 

3 Predictive Probabilities 

Probabilistic prediction simply means assigning a probability to each possible outcomes of 
an experiment. 

Recall the coin example from the previous class notes: there are three types of coins which 
are indistinguishable apart from their probability of landing heads when tossed. 

• Type A coins are fair, with probability .5 of heads 

• Type B coins have probability .6 of heads 

• Type C coins have probability .9 of heads 

You have a drawer containing 4 coins: 2 of type A, 1  of  type  B, and  1  of  type  C. You reach 
into the drawer and pick a coin at random. We let A stand for the event ‘the chosen coin 
is of type A’. Likewise for B and C. 

3.1 Prior predictive probabilities 

Before taking data we can compute the probability that our chosen coin will land heads (or 
tails) if flipped. Let DH be the event it lands heads and let DT the event it lands tails. We 
can use the law of total probability to determine the probabilities of these events. Either by 
drawing a tree or directly proceeding to the algebra, we get: 

.25.5 .25 

B C Coin type A 

.5 .5 .6 .4 .9 .1 

Flip result 
DH DT DH DT DH DT 

P (DH ) =  P (DH |A)P (A) +  P (DH |B)P (B) +  P (DH |C)P (C) 

= .5 · .5 +  .6 · .25 + .9 · .25 = .625 

P (DT ) =  P (DT |A)P (A) +  P (DT |B)P (B) +  P (DT |C)P (C) 

= .5 · .5 +  .4 · .25 + .1 · .25 = .375 

Definition: These probabilities give a (probabilistic) prediction of what will happen if the 
coin is tossed. Because they are computed before we collect any data they are called prior 
predictive probabilities. 

3.2 Posterior predictive probabilities 

Suppose we flip the coin once and it lands heads. We now have data D, which we can use 
to update the prior probabilities of our hypotheses to posterior probabilities. Last class we 
learned to use a Bayes table to facilitate this computation: 
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hypothesis prior likelihood 
unnormalized 

posterior posterior 
H P (H) P (D|H) P (D|H)P (H) P (H|D) 
A .5 .5 .25 .4 
B .25 .6 .15 .24 
C .25 .9 .225 .36 

total 1 .625 1 

Having flipped the coin once and gotten heads, we can compute the probability that our 
chosen coin will land heads (or tails) if flipped a second time. We proceed just as before, but 
using the posterior probabilities P (A|D), P (B|D), P (C|D) in place of the prior probabilities 
P (A), P (B), P (C). 

.24.4 .36 

B C Coin type A 

.5 .5 .6 .4 .9 .1 

Flip result 
DH DT DH DT DH DT 

P (DH |D) =  P (DH |A)P (A|D) +  P (DH |B)P (B|D) +  P (DH |C)P (C|D) 

= .5 · .4 +  .6 · .24 + .9 · .36 = .668 

P (DT |D) =  P (DT |A)P (A|D) +  P (DT |B)P (B|D) +  P (DT |C)P (C|D) 

= .5 · .4 +  .4 · .24 + .1 · .36 = .332 

Definition: These probabilities give a (probabilistic) prediction of what will happen if the 
coin is tossed again. Because they are computed after collecting data and updating the 
prior to the posterior, they are called posterior predictive probabilities. 

Note that heads on the first toss increases the probability of heads on the second toss. 

3.3 Review 

Here’s a succinct description of the preceding sections that may be helpful: 

Each hypothesis gives a different probability of heads, so the total probability of heads is 
a weighted average. For the prior predictive probability of heads, the weights are given by 
the prior probabilities of the hypotheses. For the posterior predictive probability of heads, 
the weights are given by the posterior probabilities of the hypotheses. 

Remember: Prior and posterior probabilities are for hypotheses. Prior predictive and 
posterior predictive probabilities are for data. To keep this straight, remember that the 
latter predict future data. 
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