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1 Learning Goals 

1. Be able to define the likelihood function for a parametric model given data. 

2. Be able to compute the maximum likelihood estimate of unknown parameter(s). 

2 Introduction 

Suppose we have data consisting of values x1, . . . , xn drawn from an exponential distribution. 
A question remains: which exponential distribution?! 

We have casually referred to the exponential distribution or the binomial distribution or the 
normal distribution. In fact the exponential distribution exp(λ) is not a single distribution 
but rather a one-parameter family of distributions. Each value of λ defines a different dis­
tribution in the family, with pdf fλ(x) =  λe−λx on [0,∞). Similarly, a binomial distribution 
bin(n, p) is determined by the two parameters n and p, and a normal distribution N(μ, σ2) 
is determined by the two parameters μ and σ2 (or equivalently, μ and σ). Parameterized 
families of distributions are often called parametric distributions or parametric models. 

We are often faced with the situation of having random data which we know (or believe) 
is drawn from a parametric model, whose parameters we do not know. For example, in 
an election between two candidates, polling data constitutes draws from a Bernoulli(p) 
distribution with unknown parameter p.  In this case we would  like to use  the data to  
estimate the value of the parameter p, as the latter determines the result of the election. 
Similarly, assuming gestational length follows a normal distribution, we would like to use 
the data of the gestational lengths from a random sample of pregnancies to draw inferences 
about the values of the parameters μ and σ2 . 

Our focus so far has been on computing the probability of data arising from a parametric 
model with known parameters. Statistical inference flips this on its head: we will estimate 
the probability of parameters given a parametric model and observed data drawn from it. In 
the coming weeks we will see how parameter values are naturally viewed as hypotheses, so 
we are in fact estimating the probability of various hypotheses given the data. 

3 Maximum Likelihood Estimates 

There are many methods for estimated unknown parameters from data. We will first con­
sider the maximum likelihood estimate (MLE), which answers the question: 

For which parameter value does the observed data have the biggest probability? 

The MLE is an example of a point estimate because it gives a single value for the unknown 
parameter (later our estimates will involve intervals and probabilities). Two advantages of 
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the MLE are that it is often easy to compute and that it agrees with our intuition in simple 
examples. We will explain the MLE through a series of examples. 

Example 1. A coin is flipped 100 times. Given that there were 55 heads, find the maximum 
likelihood estimate for the probability p of heads on a single toss. 

Before actually solving the problem, let’s establish some notation and terms. 

We can think of counting the number of heads in 100 tosses as an experiment. For a given 
value of p, the probability of getting 55 heads in this experiment is the binomial probability 

  
100 55(1 − p)45P (55 heads) = p . 
55

The probability of getting 55 heads depends on the value of p, so let’s include p in our 
notation using that of conditional probability: 

  
100 55(1 − p)45P (55 heads | p) = p . 
55

You should read P (55 heads | p) as  
‘the probability of 55 heads given p,’ 

or more precisely as 
‘the probability of 55 heads given that the probability of heads on a single toss is p.’ 

Here  are some standard  terms we will  use as we do statistics.  

•	 Experiment : Flip the coin 100 times and count the number of heads. 

•	 Data: The data is the result of the experiment. In this case it is ‘55 heads’. 

•	 Parameter(s) of interest : We are interested in the value of the unknown parameter p. 

•	 Likelihood, or  likelihood function: this  is  P (data | p). Note it depends on the data and 
the parameter p. In this case the likelihood is 

  
100 55(1 − p)45P (55 heads | p) = p . 
55

Notes: 
1. The likelihood P (data | p) changes as the parameter of interest p changes. 
2. Look carefully at the definition. One typical source of confusion is to mistake the likeli­
hood P (data | p) for  P (p | data). We know from our earlier work with Bayes’ theorem that 
P (data | p) and  P (p | data) are usually very different. 

Definition: Given data the maximum likelihood estimate for the parameter p is the value
 
of p that maximizes the likelihood P (data | p).
 
That is, the MLE is the value of p for which the data is most likely.
 

answer: For the problem at hand, we saw above that the likelihood
 
  
100 55(1 − p)45P (55 heads | p) = p . 
55



  
d 100 
P (data |p) =  (55p 54(1 − p)45 − 45p 55(1 − p)44) = 0

dp 55 

    
100 

ln(P (55 heads | p) = ln  + 55 ln(p) + 45  ln(1  − p). 
55 

      
d d 100 
(log likelihood) = ln + 55  ln(p) + 45  ln(1  − p)

dp dp 55
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We’ll use the notation p̂ for the MLE. We find it by finding where the derivative of the 
likelihood function is 0. 

55(1 − p)44⇒ 55p 54(1 − p)45 = 45p 

⇒ 55(1 − p) = 45p 

⇒ 55 = 100p 

⇒ the MLE is p̂ = .55 

Note: 
1. The MLE for p turned out to be exactly the fraction of heads we saw in our data. 
2. The MLE is computed from the data. That is, it is a statistic. 
3. Officially you should check that the critical point is indeed a maximum. You can do this 
with the second derivative test. 

3.1 Log likelihood 

If is often easier to work with the natural log of the likelihood function. For short this 
is simply called the log likelihood. Since ln is an increasing function, the maxima of the 
likelihood and log likelihood coincide. 

Example 2. Redo the previous example using log likelihood. C )
100answer: We had the likelihood P (55 heads | p) =  p55(1 − p)45 . Therefore the log 55 

likelihood is 

Maximizing likelihood is the same as maximizing log likelihood. We check that calculus 
gives us the same answer as before: 

55 45
 
= − = 0  

p 1 − p 

⇒ 55(1 − p) = 45p 

⇒ p̂ = .55 

3.2 Maximum likelihood for continuous distributions 

For continuous distributions, we use the probability density function to define the likelihood. 

Example 3. Light bulbs 
Suppose that the lifetime of Badger brand light bulbs is modeled by an exponential distri­
bution with (unknown) parameter λ. We test 5 bulbs and find they have lifetimes of 2, 3, 
1, 3, and 4 years, respectively. What is the MLE for λ? 

( )
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  n �1 − n (xi−μ)2 

i=1 2σ2f(x1, . . . , xn | μ, σ) =  √ e . 
2π σ 

( )

  
�1 n (xi−μ)2 � (xi − μ)− i=1 2σ2(x1, . . . , xn|μ, σ) =  √ e , ln(f(x1, . . . , xn|μ, σ)) = −n ln( 2π)−n ln(σ)− . 

2σ22π σ 
i=1 

� � � n n n∂f(x1, . . . , x |μ, σ) (xi − μ)n i=1 xi = = 0  ⇒ xi = nμ ⇒ μ̂ = = x. 
∂μ σ2 n 

i=1 i=1 
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answer: We need to be careful with our notation. With five different values it is best to 
use subscripts. Let Xj be the lifetime of the ith bulb and let xi be the value Xi takes. Then 
each Xi has pdf λe−λx . We assume the lifetimes of the bulbs are independent, so the joint 
pdf is 

−λ(x1+x2+x3+x4+x5)f(x1, x2, x3, x4, x5 | λ) =  λ5 e . 

Note that we write this as a conditional density, since it depends on λ. Viewing the data 
as fixed and λ as variable, this density is the likelihood function. Our data had values 

x1 = 2, x2 = 3, x3 = 1, x4 = 3, x5 = 4. 

So the likelihood and log likelihood functions with this data are 

−13λf(2, 3, 1, 3, 4 | λ) =  λ5 e , ln(f(2, 3, 1, 3, 4 | λ) = 5 ln(λ) − 13λ 

Finally we use calculus to find the MLE: 

d 5 5ˆ(log likelihood) = − 13 = 0 ⇒ λ = . 
dλ λ 13 

Note: 
1. In this example we used an uppercase letter for a random variable and the corresponding 
lowercase letter for the value it takes. This will be our usual practice. 2. The MLE for λ 
turned out to be the reciprocal of the sample mean x̄, so  X ∼ exp(λ̂) satisfies E(X) = x̄. 

We can use the method of maximum likelihood to estimate multiple parameters at once. 

Example 4. Normal distributions 
Suppose the data x1, x2, . . . , xn is drawn from a N(μ, σ2) distribution, where μ and σ are 
unknown. Find the maximum likelihood estimate for the pair (μ, σ2). 

answer: Let’s be precise and phrase this in terms of random variables and densities. Let 
uppercase X1, . . . , Xn be i.i.d. N(μ, σ2) random variables, and let lowercase xi be the value 
Xi takes. The density for each Xi is 

(xi−μ)21 −√ e 2σ2 . 
2π σ 

Since the Xi are independent their joint pdf is the product of the individual pdf’s: 

For the fixed data x1, . . . , xn, the likelihood and log likelihood are 

n n 
  √   2 

f

Since ln(f(x1, . . . , xn|μ, σ)) is a function of the two variables μ, σ we use partial derivatives 
to find the MLE. The easy value to find is μ̂: 
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�nf(x1, . . . , x |μ, σ) n (xi − μ)2 (xi − μ)2 
n

σ2 i=1= − + = 0  ⇒ ˆ = . 
∂σ σ σ3 n 

i=1 

� 
∂

n
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σ2 1 
μ)2 1 

ˆ = (xi − ˆ = (xi − x)2 = the variance of the data. 
n n 

i=1 i=1 

n n
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To find σ̂ we differentiate and solve for σ:
 

We already know μ̂ = x, so we use that as the value for μ in the formula for σ̂. We  get  the  
maximum likelihood estimates 

μ̂ = x = the mean of the data 

Example 5. Uniform distributions 
Suppose our data x1, . . . xn are independently drawn from a uniform distribution U(a, b). 
Find the MLE estimate for a and b. 

answer: This example is different from the previous ones in that we won’t use calculus to 
find the MLE. The density for U(a, b) is  1 on [a, b]. Therefore our likelihood function is b−a 

n1 
f(x1, . . . , xn | a, b) =  

b− a 

if all xi are in the interval [a, b], and 0 otherwise. This is maximized by making b − a as 
small as possible. The only restriction is that the interval [a, b] must include all the data. 
Thus the MLE for the pair (a, b) is  

ˆâ = min(x1, . . . , xn) b = max(x1, . . . , xn). 

Example 6. Capture/recapture method 

The capture/recapture method is a way to estimate the size of a population in the wild. 
The method assumes that each animal in the population is equally likely to be captured by 
a trap.  

Suppose 10 animals are captured, tagged and released. A few months later, 20 animals are 
captured, examined, and released. 4 of these 20 are found to be tagged. Estimate the size 
of the wild population using the MLE for the probability that a wild animal is tagged. 

answer: Our unknown parameter n is the number of animals in the wild. Our data is that 
4 out of 20 recaptured animals were tagged (and that there are 10 tagged animals). The 
likelihood function is C )C )n−10 10 

16 4P (data | n animals) = C )
n 
20

(The numerator is the number of ways to choose 16 animals from among the n−10 untagged 
ones times the number of was to choose 4 out of the 10 tagged animals. The denominator 
is the number of ways to choose 20 animals from the entire population of n.) We can use 
R to compute that the likelihood function is maximized when n = 50. This should make 
some sense. It says our best estimate is that the fraction of all animals that are tagged is 
10/50 which equals the fraction of recaptured animals which are tagged. 

∑ ∑

∑ ∑

( )



      
k1 + k2 + k3 k2 + k3 k3

P (k1, k2, k3 | θ) =  θ2k1 (2θ(1 − θ))k2 (1 − θ)2k3 . 
k1 k2 k3 

6 

4 

18.05 class 10, Maximum Likelihood Estimates , Spring 2014 

Example 7. Hardy-Weinberg. Suppose that a particular gene occurs as one of two 
alleles (A and a), where allele A has frequency θ in the population. That is, a random copy 
of the gene is A with probability θ and a with probability 1 − θ. Since a diploid genotype 
consists of two genes, the probability of each genotype is given by: 

genotype AA Aa aa 
probability θ2 2θ(1 − θ) (1 − θ)2 

Suppose we test a random sample of people and find that k1 are AA, k2 are Aa, and  k3 are 
aa. Find the MLE of θ. 

answer: The likelihood function is given by 

So the log likelihood is given by 

constant + 2k1 ln(θ) +  k2 ln(θ) +  k2 ln(1 − θ) + 2k3 ln(1 − θ) 

We set the derivative equal to zero: 

2k1 + k2 k2 + 2k3− = 0  
θ 1 − θ 

Solving for θ, we find the MLE is 

2k1 + k2
θ̂ = ,

2k1 + 2k2 + 2k3 

which is simply the fraction of A alleles among all the genes in the sampled population. 

Appendix: Properties of the MLE 

For the interested reader, we note several nice features of the MLE. These are quite technical 
and will  not be on any  exams.  

The MLE behaves well under transformations. That is, if p̂ is the MLE for p and g is a 
one-to-one function, then g(p̂) is the  MLE for  g(p). For example, if σ̂ is the MLE for the 
standard deviation σ then (σ̂)2 is the MLE for the variance σ2 . 

Furthermore, the MLE is asymptotically unbiased and has asymptotically minimal variance. 
To explain these notions, note that the MLE is itself a random variable since the data is 
random and the MLE is computed from the data. Let x1, x2, . . .  be an infinite sequence of 
samples from a distribution with parameter p. Let  ̂pn be the MLE for p based on the data 
x1, . . . , xn. 

Asymptotically unbiased means that as the amount of data grows, the mean of the MLE 
converges to p. In symbols: E(p̂n) → p as n → ∞.  Of course,  we  would like the  MLE to be  
close to p with high probability, not just on average, so the smaller the variance of the MLE 
the better. Asymptotically minimal variance means that as the amount of data grows, the 
MLE has the minimal variance among all unbiased estimators of p. In symbols: for any 
unbiased estimator p̃n and E > 0 we have that Var(p̃n) +  E > Var(p̂n) as  n → ∞. 

( )( )( )
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