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1 Learning Goals 

1. Know the three overlapping “phases” of statistical practice. 

2. Know what is meant by the term statistic. 

2 Introduction to statistics 

Statistics deals with data. Generally speaking, the goal of statistics is to make inferences 
based on data. We can divide this the process into three phases: collecting data, describing 
data and analyzing data. This fits into the paradigm of the scientific method. We make 
hypotheses about what’s true, collect data in experiments, describe the results, and then 
infer from the results the strength of the evidence concerning our hypotheses. 

2.1 Experimental design 

The design of an experiment is crucial to making sure the collected data is useful. The 
adage ‘garbage in, garbage out’ applies here. A poorly designed experiment will produce 
poor quality data, from which it may be impossible to draw useful, valid inferences. To 
quote R.A. Fisher one of the founders of modern statistics, 

To consult a statistician after an experiment is finished is often merely to ask 
him to conduct a post-mortem examination. He can perhaps say what the 
experiment died of. 

2.2 Descriptive statistics 

Raw data often takes the form of a massive list, array, or database of labels and numbers. 
To make sense of the data, we can calculate summary statistics like the mean, median, and 
interquartile range. We can also visualize the data using graphical devices like histograms, 
scatterplots, and the empirical cdf. These methods are useful for both communicating and 
exploring the data to gain insight into its structure, such as whether it might follow a 
familiar probability distribution. 

2.3 Inferential statistics 

Ultimately we want to draw inferences about the world. Often this takes the form of 
specifying a statistical model for the random process by which the data arises. For example, 
suppose the data takes the form of a series of measurements whose error we believe follows 
a normal distribution. (Note this is always an approximation since we know the error must 
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have some bound while a normal distribution has range (−∞, ∞).) We might then use the 
data to provide evidence for or against this hypothesis. Our focus in 18.05 will be on how 
to use data to draw inferences about model parameters. For example, assuming gestational 
length follows a N(μ, σ) distribution, we’ll use the data of the gestational lengths of, say, 
500 pregnancies to draw inferences about the values of the parameters μ and σ. Similarly, 
we may model the result of a two-candidate election by a Bernoulli(p) distribution, and use 
poll data to draw inferences about the value of p. 

We can rarely make definitive statements about such parameters because the data itself 
comes from a random process (such as choosing who to poll). Rather, our statistical evidence 
will always involve probability statements. Unfortunately, the media and public at large 
are wont to misunderstand the probabilistic meaning of statistical statements. In fact, 
researchers themselves often commit the same errors. In this course, we will emphasize the 
meaning of statistical statements alongside the methods which produce them. 

Example 1. To study the effectiveness of new treatment for cancer, patients are recruited 
and then divided into an experimental group and a control group. The experimental group 
is given the new treatment and the control group receives the current standard of care. 
Data collected from the patients might include demographic information, medical history, 
initial state of cancer, progression of the cancer over time, treatment cost, and the effect of 
the treatment on tumor size, remission rates, longevity, and quality of life. The data will 
be used to make inferences about the effectiveness of the new treatment compared to the 
current standard of care. 

Notice that this study will go through all three phases described above. The experimental 
design must specify the size of the study, who will be eligible to join, how the experimental 
and control groups will be chosen, how the treatments will be administered, whether or 
not the subjects or doctors know who is getting which treatment, and precisely what data 
will be collected, among other things. Once the data is collected it must be described and 
analyzed to determine whether it supports the hypothesis that the new treatment is more 
(or less) effective than the current one(s), and by how much. These statistical conclusions 
will be framed as precise statements involving probabilities. 

As noted above, misinterpreting the exact meaning of statistical statements is a common 
source of error which has led to tragedy on more than one occasion. 

Example 2. In 1999 in Great Britain, Sally Clark was convicted of murdering her two 
children after each child died weeks after birth (the first in 1996, the second in 1998). 
Her conviction was largely based on a faulty use of statistics to rule out sudden infant 
death syndrome. Though her conviction was overturned in 2003, she developed serious 
psychiatric problems during and after her imprisonment and died of alcohol poisoning in 
2007. See http://en.wikipedia.org/wiki/Sally_Clark 

This TED talk discusses the Sally Clark case and other instances of poor statistical intuition: 
http://www.youtube.com/watch?v=kLmzxmRcUTo 

2.4 What is a statistic? 

We give a simple definition whose meaning is best elucidated by examples. 

Definition. A  statistic is anything that can be computed from the collected data. 

http://www.youtube.com/watch?v=kLmzxmRcUTo
http://en.wikipedia.org/wiki/Sally_Clark
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Example 3. Consider the data of 1000 rolls of a die. All of the following are statistics: 
the average of the 1000 rolls; the number of times a 6 was rolled; the sum of the squares 
of the rolls minus the number of even rolls. It’s hard to imagine how we would use the 
last example, but it is a statistic. On the other hand, the probability of rolling a 6 is not a 
statistic, whether or not the die is truly fair. Rather this probability is a property of the die 
(and the way we roll it) which we can estimate using the data. Such an estimate is given 
by the statistic ‘proportion of the rolls that were 6’. 

Example 4. Suppose we treat a group of cancer patients with a new procedure and collect 
data on how long they survive post-treatment. From the data we can compute the average 
survival time of patients in the group. We might employ this statistic as an estimate of the 
average survival time for future cancer patients following the new procedure. The latter is 
not a statistic. 

Example 5. Suppose we ask 1000 residents whether or not they support the proposal to 
legalize marijuana in Massachusetts. The proportion of the 1000 who support the proposal 
is a statistic. The proportion of all Massachusetts residents who support the proposal is 
not a statistic since we have not queried every single one (note the word “collected” in the 
definition). Rather, we hope to draw a statistical conclusion about the state-wide proportion 
based on the data of our random sample. 

The following are two general types of statistics we will use in 18.05. 

1.	 Point statistics: a single value computed from data, such as the sample average xn or 
the sample standard deviation sn. 

2.	 Interval statistics : an  interval  [a, b] computed from the data. This is really just a pair of 
point statistics, and will often be presented in the form x ± s. 

Review of Bayes’ theorem 

We cannot stress strongly enough how important Bayes’ theorem is to our view of inferential 
statistics. Recall that Bayes’ theorem allows us to ‘invert’ conditional probabilities. That 
is, if H and D are events, then Bayes’ theorem says 

P (D|H)P (H)
P (H|D) =  . 

P (D) 

In scientific experiments we start with a hypothesis and collect data to test the hypothesis. 
We will often let H represent the event ‘our hypothesis is true’ and let D be the collected 
data. In these words Bayes theorem says 

P (data |hypothesis is true) · P (hypothesis is true) 
P (hypothesis is true | data) = 

P (data) 

The left-hand term is the probability our hypothesis is true given the data we collected. 
This is precisely what we’d like to know. When all the probabilities on the right are known 
exactly, we can compute the probability on the left exactly. This will be our focus next 
week. Unfortunately, in practice we rarely know the exact values of all the terms on the 
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right. Statisticians have developed a number of ways to cope with this lack of knowledge 
and still make useful inferences. We will be exploring these methods for the rest of the 
course. 

Example 6. Screening for a disease redux 
Suppose a screening test for a disease has a 1% false positive rate and a 1% false negative
 
rate. Suppose also that the rate of the disease in the population is 0.002. Finally suppose
 
a randomly selected person tests positive. In the language of hypothesis and data we have:
 
Hypothesis: H = ‘the person has the disease’
 
Data: D = ‘the test was positive.’
 
What we want to know: P (H|D) =  P (the person has the disease | a positive test)
 

In this example all the probabilities on the right are known so we can use Bayes theorem
 
to compute what we want to know.
 

P (hypothesis | data) = P (the person has the disease | a positive test) 

= P (H|D) 

P (D|H)P (H) 
= 

P (D) 
.99 · .002 

= 
.99 · .002 + .01 · .998 

= 0.166 

Before the test we would have said the probability the person had the disease was 0.002. 
After the test we see the probability is 0.166. That is, the positive test provides some 
evidence that the person has the disease. 
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