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Problem 1. We compute
 

1 2 3]15 + 1 · 
4
[ 

5 2
 
E[X] = −2 · + −1 · + 0 · + 2 · = . 

15 15 15 15 3
 

Thus
 

Var(X) = E((X − 
2
)2) = 

14 
.
 

3 9
 

Problem 2. We first compute  1
 2
 
E[X] = x · 2xdx = 

3
0  1
 1
 
E[X2] = x 2 · 2xdx = 

2
0
  1
 1
 
E[X4] = x 4 · 2xdx = . 

3
0 

Thus,
 
1 4 1
 

Var(X) = E[X2] − (E[X])2 = − = 
2 9 18
 

and
   2 1 1 1
 
Var(X2) = E[X4] = E[X2] = − = . 

3 4 12
 

Problem 3. Use Var(X) = E(X2) − E(X)2 ⇒ 3 = E(X2) − 4 ⇒ E(X2) = 7. 

Problem 4. answer: 
Make a table X: 0 1 

prob: (1-p) p 
X2 0 1. 

From the table, E(X) = 0 · (1 − p) + 1 · p = p. 

Since X and X2 have the same table E(X2) = E(X) = p. 

Therefore, Var(X) = p − p 2 = p(1 − p). 

Problem 5. Let X be the number of people who get their own hat.
 

Following the hint: let Xj represent whether person j gets their own hat. That is,
 

1
 



/6)(5/6) = 125/4.

  

 

Xj = 1 if person j gets their hat and 0 if not. 
100 1001 1 

We have, X = Xj , so E(X) = E(Xj ). 
j=1 j=1 

Since person j is equally likely to get any hat, we have P (Xj = 1) = 1/100. Thus, 

Xj ∼ Bernoulli(1/100) ⇒ E(Xj ) = 1/100 ⇒ E(X) = 1. 

Problem 6. (a) There are a number of ways to present this. 

X ∼ 3 binomial(25, 1/6), so     k   25−k
25 1 5 

P (X = 3k) = , for k = 0, 1, 2, . . . , 25. 
k 6 6

(b) X ∼ 3 binomial(25, 1/6).
 

Recall that the mean and variance of binomial(n, p) are np and np(1 − p). So,
 

E(X) = 3 E(textbinomial(25, 1/6)) = 3·25/6 = 75/6, and Var(X) = 9 Var(textbinomial(25, 1/6)) = 9·25(1 

(c) E(X + Y ) = E(X) + E(Y ) = 150/6 = 25., E(2X) = 2E(X) = 150/6 = 25.
 

Var(X + Y ) = Var(X) + Var(Y ) = 250/4. Var(2X) = 4Var(X) = 500/4.
 

The means of X + Y and 2X are the same, but Var(2X) > Var(X + Y ).
 

This makes sense because in X +Y sometimes X and Y will be on opposite sides from
 
the mean so distances to the mean will tend to cancel, However in 2X the distance 
to the mean is always doubled. 

Problem 7. First we find the value of a: 

1 1 

f(x) dx = 1 = x + ax 2 dx =
1
+ 

a ⇒ a = 3/2. 
2 30 0 

The CDF is FX (x) = P (X ≤ x). We break this into cases: 

(i) b < 0 ⇒ FX (b) = 0. 

b2 b3 

(ii) 0 ≤ b ≤ 1 ⇒ FX (b) = 
b 

x +
3 
x 2 dx = + . 

2 2 20 

(iii) 1 < x ⇒ FX (b) = 1. 

Using FX we get   
.52 + .53 13 

P (.5 < X < 1) = FX (1) − FX (.5) = 1 − = . 
2 16 

Problem 8. (i) yes, discrete, (ii) no, (iii) no, (iv) no, (v) yes, continuous
 

2
 

4.

∫ ∫

∫



 

  

(vi) no (vii) yes, continuous, (viii) yes, continuous.
 

Problem 9. (a) We compute 

5 

P (X ≥ 5) = 1 − P (X < 5) = 1 − λe −λxdx = 1 − (1 − e −5λ) = e−5λ . 
0 

(b) We want P (X ≥ 15|X ≥ 10). First observe that P (X ≥ 15, X ≥ 10) = P (X ≥ 
15). From similar computations in (a), we know 

P (X ≥ 15) = e−15λ	 P (X ≥ 10) = e−10λ . 

From the definition of conditional probability, 

P (X ≥ 15, X ≥ 10) P (X ≥ 15)
P (X ≥ 15|X ≥ 10) =	 = = e −5λ 

P (X ≥ 10) P (X ≥ 10) 

Note: This is an illustration of the memorylessness property of the exponential 
distribution. 

Problem 10. 
(a) We did this in class. Let φ(z) and Φ(z) be the PDF and CDF of Z. 

FY (y) = P (Y ≤ y) = P (aZ + b ≤ y) = P (Z ≤ (y − b)/a) = Φ((y − b)/a). 

Differentiating: 

d d 1	 1 −(y−b)2/2a2 
fY (y) = FY (y) = Φ((y − b)/a) = φ((y − b)/a) = √ e . 

dy dy a	 2π a 

Since this is the density for N(b, a2) we have shown Y	 ∼ N(b, a2). 

(b) By part (a), Y ∼ N(µ, σ2) ⇒ Y = σZ + µ. 

But, this implies (Y − µ)/σ = Z ∼ N(0, 1). QED 

Problem 11. (a) E(W ) = 3E(X) − 2E(Y ) + 1 = 6 − 10 + 1 = −3 

Var(W ) = 9Var(X) + 4Var(Y ) = 45 + 36 = 81 

(b)	 Since the sum of independent normal is normal part (a) shows: W ∼ N(−3, 81). 
W + 3 9 

Let Z ∼ N(0, 1). We standardize W : P (W ≤ 6) = P ≤ = P (Z ≤ 1) ≈ .84. 
9 9 

Problem 12. 

Method 1 
1 

U(a, b) has density f(x) = on [a, b]. So, 
b − a 

3
 

∫

( )



  
  

����
 ����
 
bb b 2 b2 − a2 a + b
1
 x

= = .E(X) = xf(x) dx = x dx =
 

b − a a 2(b − a) 2(b − a) 2a a 
bb b 3 b3 − a31
 x


E(X2) = x 2f(x) dx = x
 2 dx = = .
 
3(b − a)
b − a a 3(b − a)a a 

Finding Var(X) now requires a little algebra, 

b3 − a3 (b + a)2 

Var(X) = E(X2) − E(X)2 = − 
3(b − a) 4 

(b − a)24(b3 − a3) − 3(b − a)(b + a)2 b3 − 3ab2 + 3a2b − a3 (b − a)3 

= = = = . 
12(b − a) 12(b − a) 12(b − a) 

Method 2 

There is an easier way to find E(X) and Var(X).
 

Let U ∼ U(a, b). Then the calculations above show E(U) = 1/2 and (E(U 2) = 1/3
 
⇒ Var(U) = 1/3 − 1/4 = 1/12.
 

Now, we know X = (b−a)U +a, so E(X) = (b−a)E(U)+a = (b−a)/2+a = (b+a)/2
 

and Var(X) = (b − a)2Var(U) = (b − a)2/12.
 

Problem 13. 

(a) Sn ∼ Binomial(n, p), since it is the number of successes in n independent 
Bernoulli trials. 

(b) Tm ∼ Binomial(m, p), since it is the number of successes in m independent 
Bernoulli trials. 

(c) Sn + Tm ∼ Binomial(n + m, p), since it is the number of successes in n + m 
independent Bernoulli trials. 

(d) Yes, Sn and Tm are independent. We haven’t given a formal definition of 
independent random variables yet. But, we know it means that knowing Sn gives no 
information about Tm. This is clear since the first n trials are independent of the last 
m. 

Problem 14. Compute the median for the exponential distribution with parameter 
λ. The density for this distribution is f(x) = λ e−λx . We know (or can compute) 
that the distribution function is F (a) = 1 − e−λa . The median is the value of a such 

−λa −λathat F (a) = .5. Thus, 1 − e = 0.5 ⇒ 0.5 = e ⇒ log(0.5) = −λa ⇒ 
a = log(2)/λ.
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Problem 15. (a) The joint distribution is given by
 

Y \ X 1 2 3 
1 1168 

5383 
825 
5383 

305 
5383 

2298 
5383 

2 573 
5383 

1312 
5383 

1200 
5383 

3085 
5383 

1741 
5383 

2137 
5383 

1505 
5383 1 

with the marginal distribution of X at right and of Y at bottom. 

(b) X and Y are dependent because, for example, 

1168 
P (X = 1 and Y = 1) = 

5383 

is not equal to 
1741 2298 

P (X = 1)P (Y = 1) = · . 
5383 5383 

Problem 16. (a) Here we have two continuous random variables X and Y with 
going potability density function 

12 
f(x, y) = xy(1 + y) for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

5 

and f(x, y) = 0 otherwise. So 

1 1 1 2
 
2 
3 

1 
3 

1 
2 

1 
4 

41
 
P ( ≤ X ≤ , ≤ Y ≤ ) = f(x, y)dy dx = .
 

4 2 3 3
 720
 

 a  b 3 2b2 + 2 2b3(b) F (a, b) = f(x, y)dy dx = a a for 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.
0 0 5 5 

(c) Since f(x, y) = 0 for y > 1, we have 

FX (a) = lim F (a, b) = F (a, 1) = a 2 . 
b→∞ 

(d) For 0 ≤ x ≤ 1, we have 

fX (x) = 
∞ 

−∞ 
f(x, y)dy = 

1 

0 
f(x, y)dy = 2x. 

dThis is consistent with (c) because (x2) = 2x.
dx 

(e) We first compute fY (y) for 0 ≤ y ≤ 1 as 

1 6 
fY (y) = f(x, y)dx = y(y + 1). 

50 
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Since f(x, y) = fX (x)fY (y), we conclude that X and Y are independent. 

Problem 17. (a) The marginal probability PY (1) = 1/2 

⇒ P (X = 0, Y = 1) = P (X = 2, Y = 1) = 0. 

Now each column has one empty entry. This can be computed by making the column 
add up to the given marginal probability. 

Y \X 0 1 2 PY 

-1 1/6 1/6 1/6 1/2 
1 0 1/2 0 1/2 
PX 1/6 2/3 1/6 1 

(b) No, X and Y are not independent. 

For example, P (X = 0, Y = 1) = 0  = 1/12 = P (X = 0) · P (Y = 1). 

Problem 18. For shorthand, let P (X = a, Y = b) = p(a, b). 

(a) P (X = Y ) = p(1, 1) + p(2, 2) + p(3, 3) + p(4, 4) = 34/136. 

(b) P (X + Y = 5) = p(1, 4) + p(2, 3) + p(3, 2) + p(4, 1) = 34/136. 

(c) P (1 < X ≤ 3, 1 < Y ≤ 3) = sum of middle 4 probabilities in table = 34/136.
 

(d) {1, 4} × {1, 4} = {(1, 1), (1, 4), (4, 1), (4, 4) ⇒ prob. = 34/136. 

Y \X 
X and Y are independent, so the table is computed from 0 

Problem 19. (a) the product of the known marginal probabilities. Since 1 
they are independent, Cov(X, Y ) = 0. 2 

PX 

(b) The sample space is Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.
 
P (X = 0, Z = 0) = P ({T T H, T T T }) = 1/4.
 

P (X = 0, Z = 1) = P ({T HH, T HT }) = 1/4.
 

P (X = 0, Z = 2) = 0.
 

P (X = 1, Z = 0) = 0.
 

P (X = 1, Z = 1) = P ({HT H, HT T }) = 1/4. 

P (X = 1, Z = 2) = P ({HHH, HHT }) = 1/4. 

Z\X 0 1 PZ 

0 1/4 0 1/4 
1 1/4 1/4 1/2 
2 0 1/4 1/4 
PX 1/2 1/2 1 

Cov(X, Z) = E(XZ) − E(X)E(Z).  
E(X) = 1/2, E(Z) = 1, E(XZ) = xiyj p(xi, yj ) = 3/4. 

⇒ Cov(X, Z) = 3/4 − 1/2 = 1/4. 

a b 

Problem 20. (a) F (a, b) = P (X ≤ a, Y ≤ b) = (x + y) dy dx. 
0 0 

0 1 PY 

1/8 1/8 1/4 
1/4 1/4 1/2 
1/8 1/8 1/4 
1/2 1/2 1 
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b a
y2
∣∣ b2 x2 2

∣∣ b ∣ a2b+ ab2
Inner integral: xy + ∣ = xb+ . Outer integral: b+ x = .

2 0 2 2 2 0 2

x2y + xy2
So F (x, y) = and F (1, 1) = 1.

∣
2

∣
∫ 1 ∫ 1 y2

∣1∣∣ 1
(b) fX(x) = f(x, y) dy = (x+ y) dy = xy + ∣ = x+ .

0 0 2 0 2

By symmetry, fY (y) = y + 1/2.

(c) To see if they are independent we check if the joint density is the product of
the marginal densities.

f(x, y) = x+ y, fX(x) · fY (y) = (x+ 1/2)(y + 1/2).

Since these are not equal, X and Y are not independent.∫ 1 ∫ 1 ∫ 1
[

2 1
y

]∣∣ 1
2

∣
x 7

(d) E(X) = x(x+ y) dy dx = x y + x dx =
0 0 2 0

∫
x2 + dx = .

0 0 2 12

1

(Or, using E(X) =

∫ 1

(b), xfX(x) dx = x(x+ 1/2)

∣
dx = 7/12.)

0 0

By symmetry E(Y ) = 7/12.

∫

E(X2 + Y 2) =

∫ 1 ∫ 1 5
(x2 + y2)(x+ y) dy dx = .∫ ∫ 0 0 6

1 1 1
E(XY ) = xy(x+ y) dy dx = .

0 0 3

1 49 1
Cov(X, Y ) = E(XY )− E(X)E(Y ) =

3
− =

144
− .

144

Problem 21.
Standardize:(∑ ) ( 1 30√i30

∑
X /n

Xi < = P n
− µ

P <
− µ

( σ/ n σ/
√
n

i

)
30/100≈ P Z <

− 1/5
)

(by the central limit theorem)
1/30

= P (Z < 3)

= 1− .0013 = .9987 (from the table)

X1 + . . .+X144
Problem 22. Let X =

144
⇒ E(X) = 2, and σX = 2/12 = 1/6.

(
√
n = 12)

264
A chain of algebra gives P (X1 + . . .+X144) + P

(
X >

144

)
= P X > 1.8333 .

( )
7



    
  

    

X − 2 1.8333 − 2 X − 2 
Standardization gives P (X > 1.8333) = P > = P > −1.0 

1/6 1/6 1/6 

X − 2 
Now, the Central limit theorem says P > −1.0 ≈ P (Z > −1) = .84 

1/6 

Problem 23. Let Xj be the IQ of a randomly selected person. We are given 
E(Xj) = 100 and σXj = 15. 

Let X be the average of the IQ’s of 100 randomly selected people. We have (X) = 100 √ 
and σX = 15/ 100 = 1.5.
 

The problem asks for P (X > 115). Standardizing we get P (X > 115) ≈ P (Z > 10).
 
This is effectively 0.
 

Problem 24. Data mean and variance x̄ = 65, s2 = 35.778. The number of 
degrees of freedom is 9. We look up t9,.025 = 2.262 in the t-table The 95% confidence 
interval is    √ √t9,.025s t9,.025s 
x̄− √ , x̄+ √ = 65 − 2.262 3.5778, 65 + 2.262 3.5778 = [60.721, 69.279] 

n n

Problem 25. Suppose we have taken data x1, . . . , xn with mean x̄. Remember in 
these probabilities µ is a given (fixed) hypothesis. 

√ 
|x̄− µ| .5 .5 n 

P (|x̄−µ| ≤ .5 | µ) = .95 ⇔ P √ < √ | µ = .95 ⇔ P |Z| < = .95. 
σ/ n σ/ n 5 

√ 

Using the table, we have precisely that 
.5 n 

= 1.96. So, n = (19.6)2 = 384. . 
5 √ 

If we use our rule of thumb that the .95 interval is 2σ we have n/10 = 2 ⇒ n = 400. 

√ 
Problem 26. The rule-of-thumb is that a 95% confidence interval is x̄ ± 1/ n. 
To be within 1% we need 

1 √ = .01 ⇒ n = 10000. 
n 

Using z.025 = 1.96 instead the 95% confidence interval is 

z.025 
x̄± √ . 

2 n 

To be within 1% we need 
z.025√ = .01 ⇒ n = 9604. 
2 n 
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Note, we are using the standard Bernoulli approximation σ ≤ 1/2. 

Problem 27. The 90% confidence interval is 

z 1.64.05 
x ± √ = x ± 

2 n 40 

We want x − 1.64 > .5, that is x > .541.
40 

So number preferring A 
400 > .541. So, 

number preferring A > 216.4 

Problem 28. A 95% confidence means about 5% = 1/20 will be wrong. You’d 
expect about 2 to be wrong. 

With a probability p = .05 of being wrong, the number wrong follows a Binomial(40, p)l 
distribution. This has expected value 2, and standard deviation 40(.05)(.95) = 1.38. 
10 wrong is (10-2)/1.38 = 5.8 standard deviations from the mean. This would be sur­
prising. 

Problem 29. We have n = 27 and s2 = 5.86. If we fix a hypothesis for σ2 we 
know 

(n − 1)s2 

σ2 
∼ χ2 

n−1 

We used R to find the critical values. (Or use the χ2 table.) 

c025 = qchisq(.975,26) = 41.923 
c975 = qchisq(.025,26) = 13.844 

The 95% confidence interval for σ2 is 

(n − 1) · s2 (n − 1) · s2 26 · 5.86 26 · 5.86 
, = , = [3.6343, 11.0056] 

c c 41.923 13.844.025 .975 

We can take square roots to find the 95% confidence interval for σ 

[1.9064, 3.3175] 

Problem 30. (a) The model is yi = a + bxi + εi, where εi is random error. 
We assume the errors are independent with mean 0 and the same variance for each i 
(homoscedastic). 

The total error squared is 1 
E2 = (yi − a − bxi)

2 = (1 − a − b)2 + (1 − a − 2b)2 + (3 − a − 3b)2 
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The least squares fit is given by the values of a and b which minimize E2 . We solve 
for them by setting the partial derivatives of E2 with respect to a and b to 0. In R 
we found that a = 1.0, b = 0.5 

(b) This is similar to part (a). The model is 

yi = axi,1 + bxi,2 + c + εi 

where the errors εi are independent with mean 0 and the same variance for each i 
(homoscedastic). 

The total error squared is 1 
E2 = (yi − axi,1 − bxi,2 − c)2 = (3 − a − 2b − c)2 + (5 − 2a − 3b − c)2 + (1 − 3a − c)2 

The least squares fit is given by the values of a, b and c which minimize E2 . We solve 
for them by setting the partial derivatives of E2 with respect to a, b and c to 0. In R 
we found that a = 0.5, b = 1.5, c = −0.5 
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