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Modeling bivariate data as a function + noise 
Ingredients 

Bivariate data (x1, y1), (x2, y2), . . . , (xn, yn). 

Model: 
yi = f (xi ) + Ei
 

f (x) some function, Ei random error.
 

Total squared error: 

n nn n 
Ei 

2 = (yi − f (xi ))
2 

i=1 i=1 

With a model we can predict the value of y for any given value of x .
 

x is called the independent or predictor variable.
 

y is the dependent or response variable.
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Examples
 

lines: y = ax + b + E 

polynomials: y = ax2 + bx + c + E 

other: y = a/x + b + E 

other: y = a sin(x) + b + E 
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Simple linear regression: finding the best fitting line
 

Bivariate data (x1, y1), . . . , (xn, yn). 

Simple linear regression: fit a line to the data 

yi = axi + b + Ei , where Ei ∼ N(0, σ2)
 

and where σ is a fixed value, the same for all data points.
 

n nn n 
Total squared error: Ei 

2 = (yi − axi − b)2
 

i=1 i=1
 

Goal: Find the values of a and b that give the ‘best fitting line’. 

Best fit: (least squares)
 
The values of a and b that minimize the total squared error.
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Linear Regression: finding the best fitting polynomial 

Bivariate data: (x1, y1), . . . , (xn, yn). 

Linear regression: fit a parabola to the data 

yi = axi 
2 + bxi + c + Ei , where Ei ∼ N(0, σ2) 

and where σ is a fixed value, the same for all data points. 
n nn n 

Total squared error: Ei 
2 = (yi − axi 

2 − bxi − c)2 .
 
i=1 i=1
 

Goal:
 
Find the values of a, b, c that give the ‘best fitting parabola’.
 

Best fit: (least squares)
 
The values of a, b, c that minimize the total squared error.
 

Can also fit higher order polynomials. 
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Stamps
 

Stamp cost (cents) vs. time (years since 1960) 
(Red dot is predicted cost in 2015.) 
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Board question: make it fit
 

Bivariate data: 
(1, 3), (2, 1), (4, 4) 

1. Do (simple) linear regression to find the best fitting line. 

Hint: minimize the total squared error by taking partial derivatives 
with respect to a and b. 

2. Do linear regression to find the best fitting parabola. 

3. Set up the linear regression to find the best fitting cubic. but 
don’t take derivatives. 

4. Find the best fitting exponential y = eax+b . 
Hint: take ln(y) and do simple linear regression. 
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Solutions
 
1. Model ŷi = axi + b. n 
total squared error = T = (yi − ŷi )

2 n 
= (yi − axi − b)2 

= (3 − a − b)2 + (1 − 2a − b)2 + (4 − 4a − b)2 

Take the partial derivatives and set to 0: 

∂T = −2(3 − a − b) − 4(1 − 2a − b) − 8(4 − 4a − b) = 0 ∂a
 

∂T
 = −2(3 − a − b) − 2(1 − 2a − b) − 2(4 − 4a − b) = 0 ∂b 

A little arithmetic gives the system of simultaneous linear equations and 
solution: 

42a +14b = 42 ⇒ a = 1/2, b = 3/2. 
14a +6b = 16 

1 3 
The least squares best fitting line is y = x + . 

2 2 
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Solutions continued
 
22. Model ŷi = ax + bxi + c .i 

Total squared error: n 
T = (yi − ŷi )

2 n 
2 = (yi − ax − bxi − c)2 
i 

= (3 − a − b − c)2 + (1 − 4a − 2b − c)2 + (4 − 16a − 4b − c)2 

We didn’t really expect people to carry this all the way out by hand. If you 
did you would have found that taking the partial derivatives and setting to 
0 gives the following system of simulataneous linear equations. 

273a +73b +21c = 71 
73a +21b +7c = 21 ⇒ a = 1.1667, b = −5.5, c = 7.3333. 
21a +7b +3c = 8 

2The least squares best fitting parabola is y = 1.1667x + −5.5x + 7.3333. 
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− d)2

Solutions continued 
33. Model ŷi = axi + bxi 

2 + cxi + d . 

Total squared error: n 
T = (yi − ŷi )

2 n 
3 = (yi − ax − bx2 − cxi − d)2 
i i 

= (3 − a − b − c − d)2 + (1 − 8a − 4b − 2c − d)2 + (4 − 64a − 16b − 4c 

In this case with only 3 points, there are actually many cubics that go 
through all the points exactly. We are probably overfitting our data. 

axi +b4. Model ŷi = e ⇔ ln(yi ) = axi + b. 

Total squared error: n 
T = (ln(yi ) − ln(ŷi ))

2 n 
= (ln(yi ) − axi − b)2 

= (ln(3) − a − b)2 + (ln(1) − 2a − b)2 + (ln(4) − 4a − b)2 

Now we can find a and b as before. (Using R: a = 0.18, b = 0.41) 
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What is linear about linear regression?
 

Linear in the parameters a, b, . . .. 

y = ax + b. 

y = ax 2 + bx + c . 

It is not because the curve being fit has to be a straight line 
–although this is the simplest and most common case. 

Notice: in the board question you had to solve a system of 
simultaneous linear equations. 
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Homoscedastic
 

BIG ASSUMPTION in least squares:
 
the Ei are independent with the same variance σ.
 

Regression line (left) and residuals (right). 
Note the homoscedasticity. 
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Heteroscedastic
 

Heteroscedastic Data
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Measuring the fit and overfitting
 

y = (y1, · · · , yn) = data values of the response variable. 

ŷ = (ŷ1, · · · , ŷn) = ‘fitted values’ of the response variable. 

ŷi = axi + b 

The R2 measure of goodness-of-fit is given by 

R2 = Cor(y , ŷ)2 

R2 is the fraction of the variance of y explained by the model. 

If all the data points lie on the curve, then y = ŷ and R2 = 1. 

(R demonstration right here.) 
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Formulas for simple linear regression
 

Model: 
yi = axi + b + Ei where Ei ∼ N(0, σ2). 

Using calculus or algebra: 

sxy
â = and b̂ = ȳ − â ̄x , 

sxx 

where 

x̄ = 
1 

(n − 1) 

n 
xi sxx = 

1 
n 

n 
(xi − x̄)2 

1 n 1 n 
ȳ = 

(n − 1) 
yi sxy = 

(n − 1) 
(xi − x̄)(yi − ȳ). 

WARNING: This is just for simple linear regression. For polynomials 
and other functions you need other formulas. 
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Board Question: using the formulas plus some theory 

Bivariate data: (1, 3), (2, 1), (4, 4) 

1.(a) Calculate the sample means for x and y . 

1.(b) Use the formulas to find a best-fit line in the xy -plane. 
sxy

â = b = y − ax
 
sxx
 n n 

sxy =
1 

(xi − x)(yi − y) sxx =
1 

(xi − x)2 . 
n − 1 n − 1 

2. Show the point (x , y) is always on the fitted line. 

3. Under the assumption Ei ∼ N(0, σ2) show that the least squares 
method is equivalent to finding the MLE for the parameters (a, b). 

Hint: f (yi | xi , a, b) ∼ N(axi + b, σ2). 
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Solution
 

answer: 1. (a) x̄ = 7/3, ȳ = 8/3. 
(b) 

sxx = (1+ 4+16)/3 − 49/9 = 14/9, sxy = (3+ 2+16)/3 − 56/9 = 7/9. 

So 
sxy

a = = 7/14 = 1/2, b = ȳ − ax̄ = 9/6 = 3/2. 
sxx 

(The same answer as the previous board question.) 

2. The formula b = ȳ − ax̄ is exactly the same as ȳ = ax̄ + b. That is, 
the point (x̄ , ȳ) is on the line y = ax + b 

Solution to 3 is on the next slide. 
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3. Our model is yi = axi + b + Ei , where the Ei are independent. Since 
Ei ∼ N(0, σ2) this becomes 

yi ∼ N(axi + b, σ2) 

Therefore the likelihood of yi given xi , a and b is 

(yi −axi −b)21 −f (yi | xi , a, b) = √ e 2σ2 

2πσ 

Since the data yi are independent the likelihood function is just the 
product of the expression above, i.e. we have to sum exponents 

 n (yi −axi −b)2 
i=1−likelihood = f (y1, . . . , yn |x1, . . . , xn, a, b) = e 2σ2 

Since the exponent is negative, the maximum likelihood will happen when 
the exponent is as close to 0 as possible. That is, when the sum 

nn 
(yi − axi − b)2 

i=1 

is as small as possible. This is exactly what we were asked to show.
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Regression to the mean 
Suppose a group of children is given an IQ test at age 4. 
One year later the same children are given another IQ test. 

Children’s IQ scores at age 4 and age 5 should be positively 
correlated. 

Those who did poorly on the first test (e.g., bottom 10%) will 
tend to show improvement (i.e. regress to the mean) on the 
second test. 
A completely useless intervention with the poor-performing 
children might be misinterpreted as causing an increase in their 
scores. 

Conversely, a reward for the top-performing children might be 
misinterpreted as causing a decrease in their scores. 

This example is from Rice Mathematical Statistics and Data Analysis
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A brief discussion of multiple linear regression 

Multivariate data: (xi ,1, xi ,2, . . . , xi ,m, yi ) (n data points:
 
i = 1, . . . , n)
 

Model ŷi = a1xi ,1 + a2xi ,2 + . . . + amxi ,m
 

xi ,j are the explanatory (or predictor) variables.
 

yi is the response variable.
 

The total squared error is
 

n nn n 
(yi − ŷi )

2 = (yi − a1xi ,1 − a2xi ,2 − . . . − amxi ,m)
2 

i=1 i=1 
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