# Bootstrapping

18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

# Agenda

- Empirical bootstrap
- Parametric bootstrap

# Resampling

Sample (size 6): 1 2 1 5 1 12

Resample by choosing k uniformly between 1 and 6 and taking the  $k^{\rm th}$  element.

Resample (size 10): 5 1 1 1 12 1 2 1 1 5

A bootstrap (re)sample is always the same size as the original sample:

Bootstrap sample (size 6): 5 1 1 1 12 1

# Empirical bootstrap confidence intervals

Use the data to estimate the variation of estimates based on the data!

- Data:  $x_1, \ldots, x_n$  drawn from a distribution F.
- Estimate a feature  $\theta$  of F by a statistic  $\hat{\theta}$ .
- Generate many bootstrap samples  $x_1^*, \ldots, x_n^*$ .
- Compute the statistic  $\theta^*$  for each bootstrap sample.
- Compute the bootstrap difference

$$\delta^* = \theta^* - \hat{\theta}.$$

ullet Use the quantiles of  $\delta^*$  to approximate quantiles of

$$\delta = \hat{\theta} - \theta$$

• Set a confidence interval  $[\hat{\theta} - \delta_{1-\alpha/2}^*, \hat{\theta} - \delta_{\alpha/2}^*]$  ( $\delta_{\alpha/2}$  is the  $\alpha/2$  quantile.)

# Concept question

Consider finding bootstrap confidence intervals for

**I.** the mean **II.** the median **III.** 47th percentile.

Which is easiest to find?

- A. I B. II C. III D. I and II
- E. II and III F. I and III G. I and II and III

<u>answer:</u> **G.** The program essentially the same for all three statistics. All that needs to change is the code for computing the specific statistic.

## **Board question**

Data: 3 8 1 8 3 3

Bootstrap samples (each column is one bootstrap trial):

```
8 3 3 8 1 3 8 3
```

Compute a 75% confidence interval for the mean.

Compute a 75% confidence interval for the median.

### Solution

$$\bar{x} = 4.33$$

 $\bar{x}^*$ :

3.17 3.17 4.67 5.50 3.17 2.67 3.50 2.67

 $\delta^*$ :

So,  $\delta^*_{.125}=-1.67$ ,  $\delta^*_{.875}=0.75$ . (For  $\delta^*_{.875}$  we took the average of the top two values –there are other reasonable choices.)

### Sort:

75% CI: 
$$[\bar{x} - 0.75, \ \bar{x} + 1.67] = [3.58 \ 6.00]$$



## Resampling in R

```
# This code reminds you how to use the R function sample()
to resample data.
# an arbitrary array
x = c(3, 5, 7, 9, 11, 13)
n = length(x)
# Take a bootstrap sample from x
resample.bs = sample(x, n, replace=TRUE)
print(resample.bs)
# Print the 3rd and 5th elements in resample.bs
resample.bs[c(3,5)]
```

# Parametric bootstrapping

Use the data to estimate a parameter. Use the parameter to estimate the variation of the parameter estimate.

- Data:  $x_1, \ldots, x_n$  drawn from a distribution  $F(\theta)$ .
- Estimate  $\theta$  by a statistic  $\hat{\theta}$ .
- Generate many bootstrap samples from  $F(\hat{\theta})$ .
- ullet Compute  $heta^*$  for each bootstrap sample.
- Compute the difference from the estimate

$$\delta^* = \theta^* - \hat{\theta}$$

 $\bullet$  Use quantiles of  $\delta^*$  to approximate quantiles of

$$\delta = \hat{\theta} - \theta$$

• Use the quantiles to define a confidence interval.

# Parametric sampling in R

```
# an arbitrary array from binomial(15, theta) for an
unknown theta
x = c(3, 5, 7, 9, 11, 13)
binomSize = 15
n = length(x)
thetaHat = mean(x)/binomSize
parametricSample = rbinom(n, binomSize, thetaHat)
print(parametricSample)
```

## Board question

Data: 6 5 5 5 7 4  $\sim$  binomial(8, $\theta$ )

- **1.** Estimate  $\theta$ .
- **2.** Write out the R code to generate data of 100 parametric bootstrap samples and compute an 80% confidence interval for  $\theta$ .

(You will want to make use of the R function quantile().) Solution on next slide

### Solution

Data:  $x = 6 \ 5 \ 5 \ 7 \ 4$ 

1. Since  $\theta$  is the expected fraction of heads for each binomial we make the estimate  $\hat{\theta} = mean(x)/8 =$  average fraction of heads in each binomial trial.

$$\hat{\theta} = .667$$

Parametric bootstrap sample: One bootstrap sample is 6 draws from a binomial  $(8,\hat{\theta})$  distribution.

The R code is on the next slides.

We generate bootstrap data and compute  $\delta^*$ . The quantiles we need are The bootstrap principle says  $\delta_{p} \approx \delta^*_{p}$ 

The 80% confidence interval is

$$\left[\hat{\theta} - \delta_{.9}^*, \ \hat{\theta} - \delta_{.1}^*\right]$$

(Notice we are using quantiles not critical values here.)

# R code for parametric bootstrap

```
binomSize = 8 # number of 'coin tosses' in each binomial
trial
x = c(6, 5, 5, 5, 7, 4) \# given data
n = length(x) # number of data points
thetahat = mean(x)/binomSize # estimate of \theta
# Compute \delta^* for 100 parametric bootstrap samples
nboot = 100
dstar.list = rep(0,nboot)
for (j in 1:nboot)
  # Genereate a parametric bootstrap sample and compute \delta^*
  xstar = rbinom(n,binomSize,thetahat)
  thetastar = mean(xstar)/binomSize
  dstar.list[j] = thetastar - thetahat
(continued)
```

### R code continued

```
# compute the confidence interval
alpha = .2
dstar_alpha2 = quantile(dstar.list, alpha/2, names=FALSE)
dstar_1minusalpha2 = quantile(dstar.list, 1-alpha/2,
names=FALSE)
CI = thetahat - c(dstar_1minusalpha2, dstar_alpha2)
print(CI)
```

# Preview of linear regression

- Fit lines or polynomials to bivariate data
- Model: y = f(x) + E f(x) function, E random error. item Example: y = ax + b + E
- Example  $y = ax^2 + bx + c + E$
- Example  $y = e^{ax+b+E}$

MIT OpenCourseWare http://ocw.mit.edu

#### 18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.