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Agenda
 

Review of critical values and quantiles. 

Computing z , t, χ2 confidence intervals for normal data. 

Conceptual view of confidence intervals. 

Confidence intervals for polling (Bernoulli distributions). 

CLT ⇒ large sample confidence intervals for the mean. 

June 2, 2014 2 / 17 



Review of critical values and quantiles
 

Quantile: left tail P(X < qα) = α 

Critical value: right tail P(X > cα) = α 

Letters for critical values: 

zα for N(0, 1) 

tα for t(n) 

cα, xα all purpose 

z
qα zα

P (Z > zα)P (Z ≤ qα)

αα

qα and zα for the standard normal distribution. 
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2. −z.16 =

(a) -1.33 (b) -.99 (c) .99 (d) 1.33 (e) 3.52

Solution on next slide.

Concept question
 

z
qα zα

P (Z > zα)P (Z ≤ qα)

αα

1. z.025 = 

(a) -1.96 (b) -.95 (c) .95 (d) 1.96 (e) 2.87 
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Concept question
 

z
qα zα

P (Z > zα)P (Z ≤ qα)

αα

1. z.025 = 

(a) -1.96 (b) -.95 (c) .95 (d) 1.96 (e) 2.87 

2. −z.16 = 

(a) -1.33 (b) -.99 

Solution on next slide. 

(c) .99 (d) 1.33 (e) 3.52 
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Solution
 

1. z.025 = 1.96. By definition P(Z > z.025) = .025. This is the same as 
P(Z ≤ z.025) = .975. Either from memory, a table or using the R function 
qnorm(.975) we get the result. 

2. z.16 = .99. We recall that P(|Z | < 1) ≈ .68. Since half the leftover 
probability is in the right tail we have P(Z > 1) ≈ .16. Thus z.16 ≈ 1. 
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Computing confidence intervals from normal data 
Suppose the data x1, . . . , xn is drawn from N(µ, σ2) 
Confidence level = 1 − α 

z confidence interval for the mean (σ known)  
zα/2 · σ zα/2 · σ 

x − √ , x + √ 
n n

t confidence interval for the mean (σ unknown)  
tα/2 · s tα/2 · s 

x − √ , x + √ 
n n

χ2 confidence interval for σ2  
n − 1 2 n − 1 2s , s 
cα/2 c1−α/2 

t and χ2 have n − 1 degrees of freedom. 
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z rule of thumb
 

Suppose x1, . . . , xn ∼ N(µ, σ2) with σ known.
 

The rule-of-thumb 95% confidence interval for µ is:
 

σ σ 
x̄ − 2√ , x̄ + 2 √ 

n n 

A more precise 95% confidence interval for µ is: 

σ σ 
x̄ − 1.96√ , x̄ + 1.96√ 

n n 
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Board question: computing confidence intervals
 

The data 1, 2, 3, 4 is drawn from N(µ, σ2) with µ unknown. 

Find a 90% z confidence interval for µ, given that σ = 2. 

For the remaining parts, suppose σ is unknown. 

2 Find a 90% t confidence interval for µ. 

3 Find a 90% χ2 confidence interval for σ2 . 

4 Find a 90% χ2 confidence interval for σ. 

5 Given a normal sample with n = 100, x = 12, and s = 5, 
find the rule-of-thumb 95% confidence interval for µ. 
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Solution 
x = 2.5, s2 = 1.667, s = 1.29√ √ 
σ/ n = 1, s/ n = .645. 
1. z.05 = 1.644: z confidence interval is 

2.5 ± 1.644 · 1 = [.856, 4.144] 

2. t.05 = 2.353 (3 degrees of freedom): t confidence interval is 

2.5 ± 2.353 · .645 = [.982, 4.018] 

3. c.05 = 7.1814, c.95 = .352 (3 degrees of freedom): χ2 confidence 
interval is 

3 · 1.667 3 · 1.667 
7.1814 

, 
.352 

= [.696, 14.207]. 

4. Take the square root of the interval in 3. [.593, 3.769]. 
5. The rule of thumb is written for z , but with n = 100 the t(99) and 
standard normal distributions are very close, so we can assume that 
t.025 ≈ 2. Thus the 95% confidence interval is 12 ± 2 · 5/10 = [11, 13]. 
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Conceptual view of confidence intervals 
Computed from data ⇒ interval statistic 

‘Estimates’ a parameter of interest ⇒ interval estimate 

The width and confidence level are measures of the precision and 
performance of the interval estimate; comparable to power and 
significance level in NHST. 

Confidence intervals are a frequentist method. 
� No need for a prior, only uses likelihood. 
�	 Frequentists never assign probabilities to unknown parameters: 

a 95% confidence interval of [1.2, 3.4] for µ does not mean that 
P(1.2 ≤ µ ≤ 3.4) = .95. 

� We will compare with Bayesian probability intervals next time. 

In the applet, the confidence interval (random interval) covers the 
true mean 100(1 − α)% of the times you hit ‘generate data’: 
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Table discussion
 

How does the width of a confidence interval for the mean change if:
 

1. we increase n? 

2. we increase c? 

3. we increase µ? 

4. we increase σ? 

(A) it gets wider (B) it gets narrower (C) it stays the same. 
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Answers
 

1. Narrower. More data decreases the variance of x̄ 

2. Wider. Greater confidence requires a bigger interval. 

3. No change. Changing µ will tend to shift the location of the intervals. 

4. Wider. Increasing σ will increase the uncertainty about µ. 
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Board question: confidence intervals, non-rejection regions
 

Suppose x1, . . . , xn ∼ N(µ, σ2) with σ known. 

Consider two intervals: 

1. The z confidence interval around x at confidence level 1 − α. 

2. The z non-rejection region for H0 : µ = µ0 at significance level α. 

Compute and sketch these intervals to show that: 

µ0 is in the first interval ⇔ x is in the second interval. 
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Solution
 

σ 
Confidence interval: x ± zα/2 · √ 

n 
σ 

Non-rejection region: µ0 ± zα/2 · √ 
n 

Since the intervals are the same width they either both contain the 
other’s center or neither one does. 

x

N(µ0, σ
2/n)

µ0 − zα/2 · σ√
n

µ0 + zα/2 · σ√
n

µ0 x1x2
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Polling: binomial proportion confidence interval 
Data x1, . . . , xn from a Bernoulli(p) distribution with p unknown. 

A normal† (1 − α) confidence interval for p is given by 

zα/2 zα/2 
x̄ − √ , x̄ + √ . 

2 n 2 n  
Proof uses the CLT and the observation σ = p(1 − p) ≤ 1/2. 

√ 
Political polls often give a margin of error of ±1/ n, corresponding 
to a 95% confidence interval: 

1 1 
x̄ − √ , x̄ + √ . 

n n 

Conversely, a margin of error of ±.05 means 400 people were polled. 
†There are many types of binomial proportion confidence intervals. 

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval 

Proof is in class 23 notes. 
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Board question
 

A (1 − α) confidence interval for p is given by 

zα/2 zα/2 
x̄ − √ , x̄ + √ . 

2 n 2 n 

1. How many people would you have to poll to have a margin of error 
of .01 with 95% confidence? (You can do this in your head.) 

2. How many people would you have to poll to have a margin of error 
of .01 with 80% confidence. (You’ll want R or a table here.) √ 
answer: 1. Need 1/ n = .01 So n = 10000. 

zα/2
2. α = .2, so zα/2 = qnorm(.9) = 1.2816. So we need √ = .01. This 

2 n 
gives n = 4106. 
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Non-normal data 

Suppose the data x1, x2, . . . , xn is drawn from a distribution f (x) that 
may not be normal or even parametric, but has finite mean, variance. 

A version of the CLT says that for large n, the sampling distribution 
of the studentized mean is approximately standard normal: 

x̄ − µ√ ≈ N(0, 1) 
s/ n 

So for large n the (1 − α) confidence interval for µ is approximately 

s s 
x̄ − √ · zα/2, x̄ + √ · zα/2 (1) 

n n 

where zα/2 is the α/2 critical value for N(0, 1). 

This is called the large sample confidence interval. 

June 2, 2014 17 / 17 

[ ]



�������	
��
����
�
������������������

�������	�
�������	�����
� � �!��"��	��#���������
#�
�	$�%��&

'�
��	(�
�����	�� ��������	$�����������
��!���
���
���
����(�)��*�+���������������������������
���

http://ocw.mit.edu
http://ocw.mit.edu/terms

